1) infinite integral with parameter
含参量无穷积分
1.
This paper proves the necessary and safficient condition of uniform convergence of infinite integral with parameters,and discusses the feature of unifom convergence of infinite integral with parameters,explains its application with examples.
证明了含参量无穷积分一致收敛的一个充要条件 ,进一步讨论了含参量无穷积分一致收敛的本质特征 ,并结合实例说明了它的应用 。
2) infinite integral containing parameters
含参量无穷限积分
1.
On the base of the relation between the two abnormality integral containing parameters, the judgment theorem of consistent astringency of flaw integral containing parameters was deduced from the judgment theorem of consistent astringency infinite integral containing parameters.
依据两类含参量反常积分可以互化的关系,从含参量无穷限积分的一致收敛的判定定理出发,给出了含参量瑕积分一致收敛性的判定定理及其证明。
3) Containing Parameter Integral
含参量积分
1.
Containing Parameter Integral and Uniform Convergence on Fuzzy Interval Value Function
Fuzzy区间值函数的含参量积分及一致收敛性
4) Infinite integral
无穷积分
1.
Four Methods of Solution for Infinite Integral I=integral from n=-∞ to +∞(e~(-x)~2dx);
无穷积分I=integral from n=-∞ to +∞(e~(-x)~2dx)的四种解法
2.
The demonstration of equivalence between two infinite integral convegence;
2个无穷积分收敛性等价的证明
3.
Analysis on the Convergent Sufficiency of the Infinite Integral s Integrand;
无穷积分的被积函数收敛的充分性分析
5) improper integral
无穷积分
1.
We give some formulas for a class improper integrals integral from n=0 to ∞()(sin~r(αx)/x~s)cos~p(bx),for α≠0,b≥0,r,s,p∈N={1,2,3,…}.
给出了一类无穷积分integral from n=0 to ∞ ( )(sin~r(αx)/x~s)cos~p(bx)的计算公式,其中α≠0,b≥0,r,s,p∈N={1,2,3,…}。
2.
In the article,some evaluations for the first kind of improper integrals ∫~∞_0sin(βx)x~ncos(bx)dx for positive integer n1 and real numbers β≠0,b0 are established using the trigonometric power formulae, the L′Hospital rule,integration by part,and mathematical induction.
利用分部积分法和L′Hosp ita l法则得到了无穷积分∞∫0sin(βx)xncos(bx)dx(其中正整数n 1,实数β≠0,b 0)的一般计算公式,并且作为副产品得到了三个组合恒等式。
6) flaw integral containing parameters
含参量瑕积分
1.
On the base of the relation between the two abnormality integral containing parameters, the judgment theorem of consistent astringency of flaw integral containing parameters was deduced from the judgment theorem of consistent astringency infinite integral containing parameters.
依据两类含参量反常积分可以互化的关系,从含参量无穷限积分的一致收敛的判定定理出发,给出了含参量瑕积分一致收敛性的判定定理及其证明。
补充资料:含参变量积分
见积分学。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条