1) infinite integral
无穷限积分
1.
Solution of one type of infinite integral by Laplace transform;
用Laplace变换求一类无穷限积分
2.
then infers other a series of results of infinite integral of monotone function by this conclusion.
然后,利用这一结论,相继推得单调函数无穷限积分的其他一系列结果。
3.
In this paper, we obtain the control convergence theorem of infinite integral and extendthe result on the basis of Arzela control convergence theorem of Riemann integral in a finite region.
本文根据有限区间上Riemann积分的Arzela控制收敛定理[1],给出无穷限积分的控制收敛定理,并做了相应的推广。
2) infinite limited integral calculus
无穷限广义积分
1.
Calculating methods and skill of infinite limited integral calculus;
无穷限广义积分的计算方法及技巧
3) abnormal integral in the infinite range of integration
无穷限反常积分
1.
It is proved that the limit of the integrand f(x) of convergent abnormal integral in the infinite range of integration at infinity is zero on certain conditions.
证明了在一定条件下,收敛无穷限反常积分的被积函数f(x)在无穷远处的极限是零,在f(x)或xf(x)单调的条件下,还得到了更好的结果。
4) Infinite multiple integral
无穷限多重积分
5) infinitely dimensional integrals
无穷维积分;无限维积分
6) Infinite integral
无穷积分
1.
Four Methods of Solution for Infinite Integral I=integral from n=-∞ to +∞(e~(-x)~2dx);
无穷积分I=integral from n=-∞ to +∞(e~(-x)~2dx)的四种解法
2.
The demonstration of equivalence between two infinite integral convegence;
2个无穷积分收敛性等价的证明
3.
Analysis on the Convergent Sufficiency of the Infinite Integral s Integrand;
无穷积分的被积函数收敛的充分性分析
补充资料:弱无穷维空间
弱无穷维空间
weakly infinite-dimensional space
弱无穷维空间〔we刹y词训te~‘n犯‘田‘匆,ce;cJIa606ec劝。e,。oMepooen一ocTpaHc,」 一个拓扑空间(topologjcal sPace)X,使得对其闭子集偶对的任意无穷系(A,,B‘), A,自B,=沪,i=1,2,…,存在(A与B;之间的)分划(Partition)C,,满足自c=必.不是弱无穷维的无穷维空间称为强无穷维(strongly inl训te dinle比ional)空间.弱无穷维空间也称为A弱无穷维(A一weakly沉肋ited由℃nsional)空间.若在上述定义中,进一步要求c,的某有限子族有空的交集,就得出S弱无穷维空间(S一weak】y顾-nite .dinlensio耐sPace)的概念.【补注】除上述外,A弱就是AneKcaHJIpoB弱(Akk-san山{。vweakly),S弱就是CM即HoB弱(Snurnovweakly).还有一种已经弃之不用的概念Hurewicz弱无穷维空间(Hurewicz一wea脚infin讹一山住r朋io耐space),见综述[AI], 为避免“无穷维空间”这个词的混乱,空间X要求可度量化,见【A2].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条