说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 无穷维积分;无限维积分
1)  infinitely dimensional integrals
无穷维积分;无限维积分
2)  infinitely dimensional integral
无穷维积分
3)  infinite integral
无穷限积分
1.
Solution of one type of infinite integral by Laplace transform;
用Laplace变换求一类无穷限积分
2.
then infers other a series of results of infinite integral of monotone function by this conclusion.
然后,利用这一结论,相继推得单调函数无穷限积分的其他一系列结果。
3.
In this paper, we obtain the control convergence theorem of infinite integral and extendthe result on the basis of Arzela control convergence theorem of Riemann integral in a finite region.
本文根据有限区间上Riemann积分的Arzela控制收敛定理[1],给出无穷限积分的控制收敛定理,并做了相应的推广。
4)  Infinite integral
无穷积分
1.
Four Methods of Solution for Infinite Integral I=integral from n=-∞ to +∞(e~(-x)~2dx);
无穷积分I=integral from n=-∞ to +∞(e~(-x)~2dx)的四种解法
2.
The demonstration of equivalence between two infinite integral convegence;
2个无穷积分收敛性等价的证明
3.
Analysis on the Convergent Sufficiency of the Infinite Integral s Integrand;
无穷积分的被积函数收敛的充分性分析
5)  improper integral
无穷积分
1.
We give some formulas for a class improper integrals integral from n=0 to ∞()(sin~r(αx)/x~s)cos~p(bx),for α≠0,b≥0,r,s,p∈N={1,2,3,…}.
给出了一类无穷积分integral from n=0 to ∞ ( )(sin~r(αx)/x~s)cos~p(bx)的计算公式,其中α≠0,b≥0,r,s,p∈N={1,2,3,…}。
2.
In the article,some evaluations for the first kind of improper integrals ∫~∞_0sin(βx)x~ncos(bx)dx for positive integer n1 and real numbers β≠0,b0 are established using the trigonometric power formulae, the L′Hospital rule,integration by part,and mathematical induction.
利用分部积分法和L′Hosp ita l法则得到了无穷积分∞∫0sin(βx)xncos(bx)dx(其中正整数n 1,实数β≠0,b 0)的一般计算公式,并且作为副产品得到了三个组合恒等式。
6)  infinite limited integral calculus
无穷限广义积分
1.
Calculating methods and skill of infinite limited integral calculus;
无穷限广义积分的计算方法及技巧
补充资料:无穷


无穷
infinity

  无穷[刘茄妙;6ec幼。e,。oeT‘] 在多种数学分支中出现的一个概念,主要作为有限性概念的反意词.在分析和几何理论中无穷的概念用来表示“反常”或“无穷远”元素.无穷的概念用于集合论和数理逻辑—“无穷集”的研究中,也用于其他数学分支中. 功无穷小和无穷大变量(~bIe叮皿g田加de)的概念是数学分析中的基本概念,在无穷小概念的现代处理方法出现之前的思想是这样的,有限量是由无穷多个无穷小的“不可分量”组成的,这里的不可分量不是作为变量而是作为比任何有限量都小的常量(见不可分里法(访山佑ib此,n犯山闭of)).这种思想的例子之一是从有限到无穷的非常规的分解:唯一有意义的过程是把一个有限量划分成个数无限增加而大小无限减小的组成部分. 2)无穷也以“反常”的即无穷远几何映象的形式在完全不同的数学领域出现(见无穷远元(顾面忱ly-曲粉田t elelr℃nt).例如,直线a上的无穷远点被看成是“附加”到通常的诸有限点中的一个特殊的不变的对象.然而,在这里也能看到有限和无穷之间的不可分离的联系:考虑从不在直线a上的点为中心的投影,通过中心且与直线a平行的直线就对应于无穷远点. 具有相似特点的是用两个“反常”的数+的和一的而得到的实数系的完全化,这种完全化适合分析和实变函数论中的许多要求.用超限数(七2此肠te~-ber)田,臼+1,…,2。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条