1) infinitely dimensional integral
无穷维积分
2) infinitely dimensional integrals
无穷维积分;无限维积分
3) Infinite integral
无穷积分
1.
Four Methods of Solution for Infinite Integral I=integral from n=-∞ to +∞(e~(-x)~2dx);
无穷积分I=integral from n=-∞ to +∞(e~(-x)~2dx)的四种解法
2.
The demonstration of equivalence between two infinite integral convegence;
2个无穷积分收敛性等价的证明
3.
Analysis on the Convergent Sufficiency of the Infinite Integral s Integrand;
无穷积分的被积函数收敛的充分性分析
4) improper integral
无穷积分
1.
We give some formulas for a class improper integrals integral from n=0 to ∞()(sin~r(αx)/x~s)cos~p(bx),for α≠0,b≥0,r,s,p∈N={1,2,3,…}.
给出了一类无穷积分integral from n=0 to ∞ ( )(sin~r(αx)/x~s)cos~p(bx)的计算公式,其中α≠0,b≥0,r,s,p∈N={1,2,3,…}。
2.
In the article,some evaluations for the first kind of improper integrals ∫~∞_0sin(βx)x~ncos(bx)dx for positive integer n1 and real numbers β≠0,b0 are established using the trigonometric power formulae, the L′Hospital rule,integration by part,and mathematical induction.
利用分部积分法和L′Hosp ita l法则得到了无穷积分∞∫0sin(βx)xncos(bx)dx(其中正整数n 1,实数β≠0,b 0)的一般计算公式,并且作为副产品得到了三个组合恒等式。
5) infinite integral
无穷限积分
1.
Solution of one type of infinite integral by Laplace transform;
用Laplace变换求一类无穷限积分
2.
then infers other a series of results of infinite integral of monotone function by this conclusion.
然后,利用这一结论,相继推得单调函数无穷限积分的其他一系列结果。
3.
In this paper, we obtain the control convergence theorem of infinite integral and extendthe result on the basis of Arzela control convergence theorem of Riemann integral in a finite region.
本文根据有限区间上Riemann积分的Arzela控制收敛定理[1],给出无穷限积分的控制收敛定理,并做了相应的推广。
6) real infinite integrals
实无穷积分
1.
To apply the basic idea of probability to the computing of real infinite integrals,to find that this method is more simple,convenient and widely used than the Small Arc Lemma.
将概率的基本思想,应用在计算实无穷积分中,结果表明该方法与小圆弧引理相比,计算更为方便简单、适用范围更为广泛。
补充资料:弱无穷维空间
弱无穷维空间
weakly infinite-dimensional space
弱无穷维空间〔we刹y词训te~‘n犯‘田‘匆,ce;cJIa606ec劝。e,。oMepooen一ocTpaHc,」 一个拓扑空间(topologjcal sPace)X,使得对其闭子集偶对的任意无穷系(A,,B‘), A,自B,=沪,i=1,2,…,存在(A与B;之间的)分划(Partition)C,,满足自c=必.不是弱无穷维的无穷维空间称为强无穷维(strongly inl训te dinle比ional)空间.弱无穷维空间也称为A弱无穷维(A一weakly沉肋ited由℃nsional)空间.若在上述定义中,进一步要求c,的某有限子族有空的交集,就得出S弱无穷维空间(S一weak】y顾-nite .dinlensio耐sPace)的概念.【补注】除上述外,A弱就是AneKcaHJIpoB弱(Akk-san山{。vweakly),S弱就是CM即HoB弱(Snurnovweakly).还有一种已经弃之不用的概念Hurewicz弱无穷维空间(Hurewicz一wea脚infin讹一山住r朋io耐space),见综述[AI], 为避免“无穷维空间”这个词的混乱,空间X要求可度量化,见【A2].
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条