1) Riesz bound
Riesz界
2) Bochner-Riesz operator below critical index
低于临界阶的Bochner-Riesz算子
3) riesz bases
Riesz基
1.
Riesz bases in L~2(0,1)~2 related to sampling in 2-dimenional wavelet subspace;
基于L~2(0,1)~2空间Riesz基的二维小波子空间采样定理
2.
Starting with a pair of compactly supported refinable functions φ and in L~2(R) satisfying a very mild condition,a general principle for constructing a wavelet ψ of dilation factor a is provided such that the wavelets ψ_(jk)=a~(j2)ψ(a~j·-k)(j,k∈Z) form a Riesz bases for L~2(R).
-k)(j,k∈Z)构成L2(R)的Riesz基,当φ属于Sobolev空间Hm(R)的时,导数aj2ψ(m)(aj。
3.
Let {x_n} be a Riesz bases of Banach space X and T:X→X be a linear homeomorphism and a bounded linear operator,if there exist M≥0,A>0,β≥0,that enableA>(βA+M)‖T‖,and {y_n} satisfies‖∑c_ny_n‖≤β‖∑c_nx_n‖+M‖c‖for any c={c_n}∈l~2,{x_n+T(y_n)} is also a Riesz base of X.
利用泛函分析中的线性同胚及有界线性算子理论,研究Banach空间中Riesz基的稳定性问题。
4) Riesz cone
Riesz锥
5) Riesz basis
Riesz基
1.
Riesz basis-based reproducing kernel and SVM;
基于Riesz基的再生核及支持向量机
2.
Another proof of discretion theorem on Riesz basis of space V 1=V 0W 0;
空间V_1=V_0+W_0的Riesz基判定定理的另一证明
3.
Design of controllers and compensators for a serially connected string system and its Riesz basis;
串联弦系统的控制器和补偿器的设计及其Riesz基
6) the Riesz potential
Riesz势
补充资料:发光地寄色界无色界天乘
【发光地寄色界无色界天乘】
谓三地菩萨,明修八禅定行,同于色界四禅,无色界四空处,故云发光地寄色无色界天乘。(八禅定者,色界、无色界各四禅定也。四禅者,初禅、二禅、三禅、四禅也。四空者,即空处、识处、无所有处、非非想处也。)
谓三地菩萨,明修八禅定行,同于色界四禅,无色界四空处,故云发光地寄色无色界天乘。(八禅定者,色界、无色界各四禅定也。四禅者,初禅、二禅、三禅、四禅也。四空者,即空处、识处、无所有处、非非想处也。)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条