1) Riesz homomorphism
Riesz同态
1.
In this paper,concerning Riesz subspaces,ideals,bands,(principal) projection property,positive operators and Riesz homomorphisms,we show some relations between E and each factor spaces E i.
关于 Riesz子空间、理想、带、(主 )投影性质、正算子和 Riesz同态 ,指出 E与每一个因子空间 Ei 之间的一些关系 。
2) complex Riesz homomorphism
复Riesz同态
3) Riesz isomorphism
Riesz同构
4) riesz bases
Riesz基
1.
Riesz bases in L~2(0,1)~2 related to sampling in 2-dimenional wavelet subspace;
基于L~2(0,1)~2空间Riesz基的二维小波子空间采样定理
2.
Starting with a pair of compactly supported refinable functions φ and in L~2(R) satisfying a very mild condition,a general principle for constructing a wavelet ψ of dilation factor a is provided such that the wavelets ψ_(jk)=a~(j2)ψ(a~j·-k)(j,k∈Z) form a Riesz bases for L~2(R).
-k)(j,k∈Z)构成L2(R)的Riesz基,当φ属于Sobolev空间Hm(R)的时,导数aj2ψ(m)(aj。
3.
Let {x_n} be a Riesz bases of Banach space X and T:X→X be a linear homeomorphism and a bounded linear operator,if there exist M≥0,A>0,β≥0,that enableA>(βA+M)‖T‖,and {y_n} satisfies‖∑c_ny_n‖≤β‖∑c_nx_n‖+M‖c‖for any c={c_n}∈l~2,{x_n+T(y_n)} is also a Riesz base of X.
利用泛函分析中的线性同胚及有界线性算子理论,研究Banach空间中Riesz基的稳定性问题。
5) Riesz cone
Riesz锥
6) Riesz basis
Riesz基
1.
Riesz basis-based reproducing kernel and SVM;
基于Riesz基的再生核及支持向量机
2.
Another proof of discretion theorem on Riesz basis of space V 1=V 0W 0;
空间V_1=V_0+W_0的Riesz基判定定理的另一证明
3.
Design of controllers and compensators for a serially connected string system and its Riesz basis;
串联弦系统的控制器和补偿器的设计及其Riesz基
补充资料:Frobenius自同态
Frobenius自同态
Froberius endomorphism
I加饭对璐自同态〔Fm加对旧曰吐阅翔解白n;。,o6e,。yea翎八oMo帅.3M] q个元素的有限域乓上概形(scheme)X的自同态咖domo印城m)杯X一X,使得价限制在X(气)上是恒等映射,并且结构层的映射扩:今~今是自乘到q次幂的映射(即把t映到t“).Fro坎对留自同态是纯不可分态射·且具有零微分·对于定义在巩上的仿射簇XC才,F拍b目五出自同态毋把点(x,,…,凡)映到(川,,’‘,对). 定义在巩上的X的几何点的个数等于价的不动点的个数,因此,能够利用1刀台如血公式(此反址忱fo卜m血恤)来确定这些点的个数、义在只上的万履答,.se‘浏’夕翩集合,即“定
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条