1) Bochner-Riesz operator
Bochner-Riesz算子
1.
The maximal multilinar commutator generated by the Bochner-Riesz operator and the BMO functions were introduced,and the weighted boundedness for the commutator on the Hardy type spaces were obtained by using the atomic decompositions.
引入了一类由Bochner-Riesz算子和BMO函数构成的极大多线性交换子,并利用原子分解的方法证明了该极大多线性交换子在Hardy型空间中的加权有界性。
2.
The operators include Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator.
讨论了某些多线性积分算子在Triebel-Lizorkin空间和Lebesgue空间的有界性,这些算子包括了Littlewood-Paley算子、Marcinkiewicz算子和Bochner-Riesz算子。
3.
It is proved that the commutator about the Bochner-Riesz operator and the commutator about(C-Z) kernel are bounded from H~(α,p)_(q,)(ω_1;ω_2) to ~(α,p,∞)_q(ω_1;ω_2) when α=n(1-1/q),where ω_1,ω_2 are Muckernhoupt s A_1 weights.
证明了Bochner-Riesz算子和CZ算子的交换子当α=n(1-1/q)时从空间H。
2) H~P spaces
Bochner-Riesz平均算子
3) the sharp Bochner-Riesz operators
Bochner-Riesz极大算子
1.
In this paper,we assumeFirst,we discuss the boundedness of the sharp Bochner-Riesz operators andits multilinear commutators on non-homogeneous Morrey space M˙pm (Rn).
设首先,讨论了大于临界阶的Bochner-Riesz极大算子B?δ以及它与BMO函数生成的多线性交换子在非齐型Morrey空间M˙pm (Rn)上的有界性,即证明了算子Bδ(f)与交换子Bδb,?(f)当δ> n?2 1时在M˙pm (Rn)上有界,其中0 < m < n,1 < p < n/m。
4) Bochner-Riesz operator below critical index
低于临界阶的Bochner-Riesz算子
5) Bochner-Laplace operator
Bochner-Laplace算子
6) Bochner-Riesz means
Bochner-Riesz平均
1.
Two sequences of spherical translation operators are constructed respectively with the help of the classical Bochner-Riesz means,the Cesàro means,and the Gauss integration formula related with the spherical harmonics,and the upper bounds of the approximation are given respectively with the K-functional.
借助于经典球面分析的Bochner-Riesz平均,Cesàro平均及有关球调和多项式的Gauss积分公式构造出了两类球面平移算子,并且以K-泛函为工具给出了逼近的上界估计。
2.
Secondly, the Bochner-Riesz means of multiple Fourier series are also expressed as spherical translation network sequences, with which two kinds of spherical translation network sequences are deined, and thirdly, the orders of ap.
进一步,将有关多重Fourier级数的Bochner-Riesz平均表示成为球型平移网络的形式。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条