1) Riesz wavelet
Riesz小波
1.
On Riesz wavelets in Hilbert Spaces;
Hilbert空间中的Riesz小波
2) wavelet Riesz bases
小波Riesz基
3) riesz bases
Riesz基
1.
Riesz bases in L~2(0,1)~2 related to sampling in 2-dimenional wavelet subspace;
基于L~2(0,1)~2空间Riesz基的二维小波子空间采样定理
2.
Starting with a pair of compactly supported refinable functions φ and in L~2(R) satisfying a very mild condition,a general principle for constructing a wavelet ψ of dilation factor a is provided such that the wavelets ψ_(jk)=a~(j2)ψ(a~j·-k)(j,k∈Z) form a Riesz bases for L~2(R).
-k)(j,k∈Z)构成L2(R)的Riesz基,当φ属于Sobolev空间Hm(R)的时,导数aj2ψ(m)(aj。
3.
Let {x_n} be a Riesz bases of Banach space X and T:X→X be a linear homeomorphism and a bounded linear operator,if there exist M≥0,A>0,β≥0,that enableA>(βA+M)‖T‖,and {y_n} satisfies‖∑c_ny_n‖≤β‖∑c_nx_n‖+M‖c‖for any c={c_n}∈l~2,{x_n+T(y_n)} is also a Riesz base of X.
利用泛函分析中的线性同胚及有界线性算子理论,研究Banach空间中Riesz基的稳定性问题。
4) Riesz cone
Riesz锥
5) Riesz basis
Riesz基
1.
Riesz basis-based reproducing kernel and SVM;
基于Riesz基的再生核及支持向量机
2.
Another proof of discretion theorem on Riesz basis of space V 1=V 0W 0;
空间V_1=V_0+W_0的Riesz基判定定理的另一证明
3.
Design of controllers and compensators for a serially connected string system and its Riesz basis;
串联弦系统的控制器和补偿器的设计及其Riesz基
6) the Riesz potential
Riesz势
补充资料:Riesz不等式
Riesz不等式
Riesz inequality
Rie亚不等式[Ri已双派甲曲妙;入cca Hep畔欣佃] 1)设王毋。}是〔。,b1上函数的规范正交系(ortho-nolll蓝115声把m)并假定对任意n,1势。}续M在〔a,b]上几乎处处成立. a)设f“L,汇a,b](l<尹攫2),则f的羊于{势。}的FO山交r系数(Fouriercod石eients俪thresp戈tto{沪。}) b 。。一J,飒,dx满足Riesz不等式 }};。。下1}。、、,,,一,}}f}1。,粤十冬一,. .‘t一”夕”叮一声“’Pq b)对于满足}1{c。}l}。<的(1<夕(2)的任意序列互c。},存在函数f任L,[“,b],f以c,作为它的 Four哈r系数并满足R此z不等式 ]}f}一。、、,‘,一,l}{。。}!},,今*粤一,. ”气”Jp’Pq_ 幻设f‘L,[0,2二1(l
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条