说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Riesz-mean
1)  Riesz-mean operator
Riesz-mean
1.
In this paper we obtain the weighted norm inequalities of Riesz-mean operators by interpolation of change measures, weighted multiplier theory and other ways, some results of Sogge are generalized to the weighted case, and some are improved to some extent.
本文利用变测度内插定理,权乘子理论等方法,得到了Riesz-mean算子的加权估计。
2)  riesz bases
Riesz基
1.
Riesz bases in L~2(0,1)~2 related to sampling in 2-dimenional wavelet subspace;
基于L~2(0,1)~2空间Riesz基的二维小波子空间采样定理
2.
Starting with a pair of compactly supported refinable functions φ and in L~2(R) satisfying a very mild condition,a general principle for constructing a wavelet ψ of dilation factor a is provided such that the wavelets ψ_(jk)=a~(j2)ψ(a~j·-k)(j,k∈Z) form a Riesz bases for L~2(R).
-k)(j,k∈Z)构成L2(R)的Riesz基,当φ属于Sobolev空间Hm(R)的时,导数aj2ψ(m)(aj。
3.
Let {x_n} be a Riesz bases of Banach space X and T:X→X be a linear homeomorphism and a bounded linear operator,if there exist M≥0,A>0,β≥0,that enableA>(βA+M)‖T‖,and {y_n} satisfies‖∑c_ny_n‖≤β‖∑c_nx_n‖+M‖c‖for any c={c_n}∈l~2,{x_n+T(y_n)} is also a Riesz base of X.
利用泛函分析中的线性同胚及有界线性算子理论,研究Banach空间中Riesz基的稳定性问题。
3)  Riesz cone
Riesz锥
4)  Riesz basis
Riesz基
1.
Riesz basis-based reproducing kernel and SVM;
基于Riesz基的再生核及支持向量机
2.
Another proof of discretion theorem on Riesz basis of space V 1=V 0W 0;
空间V_1=V_0+W_0的Riesz基判定定理的另一证明
3.
Design of controllers and compensators for a serially connected string system and its Riesz basis;
串联弦系统的控制器和补偿器的设计及其Riesz基
5)  the Riesz potential
Riesz势
6)  Riesz bound
Riesz界
补充资料:Riesz不等式


Riesz不等式
Riesz inequality

Rie亚不等式[Ri已双派甲曲妙;入cca Hep畔欣佃] 1)设王毋。}是〔。,b1上函数的规范正交系(ortho-nolll蓝115声把m)并假定对任意n,1势。}续M在〔a,b]上几乎处处成立. a)设f“L,汇a,b](l<尹攫2),则f的羊于{势。}的FO山交r系数(Fouriercod石eients俪thresp戈tto{沪。}) b 。。一J,飒,dx满足Riesz不等式 }};。。下1}。、、,,,一,}}f}1。,粤十冬一,. .‘t一”夕”叮一声“’Pq b)对于满足}1{c。}l}。<的(1<夕(2)的任意序列互c。},存在函数f任L,[“,b],f以c,作为它的 Four哈r系数并满足R此z不等式 ]}f}一。、、,‘,一,l}{。。}!},,今*粤一,. ”气”Jp’Pq_ 幻设f‘L,[0,2二1(l
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条