说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 算子代数的效应
1)  Effects on Operator Algebras
算子代数的效应
2)  generation efficiency
代数效应
3)  effect algebras
效应代数
1.
We introduce the definition of N-divisible effect algebras, then we show that N-divisible effect algebras are interval effect algebras.
引入了N-可分效应代数的定义,证明了N-可分效应代数是区间效应代数且N-可分效应代数可嵌入到可分效应代数中。
2.
Several new results of the uniform convergence on matrices with ideal topology are presented,and a new version of the matrix theorem of Antosik-Swartz with ideal topology on effect algebras is showed.
给出了理想拓扑下矩阵一致收敛的几个新结果,并得到了效应代数上理想拓扑意义下的一种新型Antosik-Swartz矩阵定理。
3.
In this paper,the ideals of a class of effect algebras were studied.
证明了若I是效应代数(E(Ω),,⊥,0,1)的一个闭理想,则存在Ω的一个闭的子集S,使得I是所有在S上为零的函数的集合。
4)  effect algebra
效应代数
1.
Horizontal sums of effect algebras and the uniqueness of sequential products;
效应代数的水平和与序列积的惟一性
2.
The complete constructions of scale generalized effect algebras and scale effect algebras are studied in this paper.
研究了标度广义效应代数与标度效应代数的代数结构,给出了比较完整的结果。
5)  operator algebras
算子代数
1.
And the relation between the S hyperreflexivity and the hyperreflexivity of operator algebras is discussed.
在自反Banach空间上引入S超自反的概念,讨论了S超自反与算子代数超自反的关系,同时讨论了超自反算子代数直和的超自反性。
2.
We prove the following theorem: Suppose that C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R) are, respectively, classes 0,Ⅰ,Ⅱa,Ⅱb,Ⅲa andⅢb of general symmetric operator algebras on spaceⅡk.
本文研究Pontrjagin空间上一般算子代数弱闭和一致闭的等价条件,得到定理:设C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R)分别是Ⅱk空间上第0,Ⅰ,Ⅱa,Ⅱb,Ⅲa和Ⅲb类的算子代数,则(1)C0(U),C2a(U)或C3a(U)为一致闭(弱闭)的等价条件是U是Hibert空间G上的C*-代数(W*-代数;(2)C1(U,L,R,D,V)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间,V是闭算子,L对称闭的;(3)C2b(U,R)或C3b(U,R)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间。
3.
The concept of generalized T_derivation is introduced and the properties of T_derivations on pure algebra and operator algebras are obtained.
引进T_导子的概念 ,刻划了一般代数和算子代数上的T_导子的特征性质 。
6)  Operator algebra
算子代数
1.
The article discuss the K-theory of operator algebras.
本文研究了算子代数的K-理论。
2.
Let X be a Banach space over the real or complex field F, let M be a standard operator algebra on X with unit I.
X表示实数域或复数域F上的Banach空间,设M是X上的一个标准算子代数,I是M的单位元。
补充资料:算子


算子
operator

  算子【啊衅.恤;onepmp] 从一个集合到另一个中的一个映射.每一个都有(用代数运算,一个拓扑,或者一个序关系定义的)一定的结构.算子的一般定义与映射(n坦pPing)或函数(n“石印)的定义一致.设X和Y是两个集合.对一个子集D CX中的每一个元素x,指定一个唯一确定的元素A(x)‘Y的规则或对应,称为从X到Y中的一个算子(。伴m幻r).D称为算子A的定义域(由兹以访of山6‘石。n),并且用D(A)表示:集合{A(x):xeD}称为算子A的值域(do找以inof丫司u留或佃〕罗),并且用R(A)表示.表达式A(x)常常写成A x.算子这个术语主要用在X和Y是向量空间的情形.如果A是一个从X到Y中的算子,这里Y=X,那么A称为义上的一个算子.如果D(A)=X,那么A称为一个处处定义的算子(e呢甲vhe记一山助己。沐m句r).如果A,,A:分别是从Xl到Y.中和从X:到YZ中以D(A,)和D(AZ)为定义域的算子,使得D(Al)C=D(AZ)并且A,x“AZx(对所有的义CD(A:)),那么如果X,=XZ,Y,=YZ,算子A、称为算子A:的一个压缩(。住甲拙ion)或限制(心川如。n),而A:称为A,的一个扩张(cxte璐ion);如果X:CXZ,A:称为A、超越X、的一个扩张. 函数空间或抽象空间中的许多方程可以表示成这种形式Ax二y,这里夕‘Y,x‘X;y是给定的,x是未知的,并且A是一个从X到Y中的算子.对任何右边yey,这个方程存在一个解的论断等价于算子A的值域是整个空间Y的论断;对任何y‘R(A),方程Ax=y有唯一解的论断,意味着A是一个从D(A)到R(A)上的一对一映射. 如果X和Y是向量空间,那么在从X到Y中的所有算子的集合里可以选出线性算子(石川汾r。详mtor)类;剩下来的从X到Y的算子称为非线性算子(加n-lin已江。详份幻招).如果X和Y是拓扑向量空间,那么在从X到Y中的算子的集合里可以自然地选出连续算子类(见连续算子(continuous。讲份幻r)),同样地有界线性算子(boUnd目lillear opelato玲)A(算子A使得X中任意有界集的象在Y中有界)的类和紧线性算子(亦即算子使得X中任一有界集的象在Y中是准紧的,见紧算子(田攻甲aCt。详而〔兀))的类.如果x和Y是局部凸空间,那么自然要考察X和Y上不同的拓扑;一个算子称为半连续的(sernl切nt泊uous),如果它定义一个从空间X(赋予初始拓扑)到赋予弱拓扑的空间Y中的连续映射伴连续性的概念主要用于非线性算子理论);一个算子称为强连续的(sti。力目y contin加uS),如果它作为从赋予有界弱拓扑的X到空间Y中的映射是连续的;一个算子称为弱连续的(w.火ly con垃luo璐),如果它定义一个从X到Y中的连续映射,这里X和Y有弱拓扑.紧算子常常称为完全连续算子(。欢甲蜘勿‘幻n血,uOU‘。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条