说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 关系代数的派生算子
1)  derived relational algebra operators
关系代数的派生算子
1.
The derived relational algebra operators are widely used in the relational database query languages.
关系代数的派生算子在关系数据库查询语言中得到了广泛应用。
2)  derivation [英][,derɪ'veɪʃn]  [美]['dɛrə'veʃən]
派生关系
1.
The non-linear narrative of Possession is characterized by intertextuality,which can be approached through a study of the juxtaposition and derivation relations of the texts.
本文旨在通过对《占有》互文性的分析,探讨各个文本间形成的共存关系、派生关系等,从文体结构的层面揭示诸文本间隐喻性的和反讽的互文迹象,并诠释文本组合的有机性以及存在于互文性中超越了字面表达的意义。
3)  relation algebra operation
关系代数运算
1.
This paper puts forward a new temporal relation data model, expounds concept of time filtration and relation algebra operation of temporal data based on the model, and provides illustrations.
提出一种新的时态关系数据模型C TRDM和基于该模型的时间过滤操作,并结合时态数据关系代数运算实例,说明它是完备的。
4)  Effects on Operator Algebras
算子代数的效应
5)  operator algebras
算子代数
1.
And the relation between the S hyperreflexivity and the hyperreflexivity of operator algebras is discussed.
在自反Banach空间上引入S超自反的概念,讨论了S超自反与算子代数超自反的关系,同时讨论了超自反算子代数直和的超自反性。
2.
We prove the following theorem: Suppose that C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R) are, respectively, classes 0,Ⅰ,Ⅱa,Ⅱb,Ⅲa andⅢb of general symmetric operator algebras on spaceⅡk.
本文研究Pontrjagin空间上一般算子代数弱闭和一致闭的等价条件,得到定理:设C0(U),C1(U,L,R,D,V),C2a(U),C2b(U,R),C3a(U),C3b(U,R)分别是Ⅱk空间上第0,Ⅰ,Ⅱa,Ⅱb,Ⅲa和Ⅲb类的算子代数,则(1)C0(U),C2a(U)或C3a(U)为一致闭(弱闭)的等价条件是U是Hibert空间G上的C*-代数(W*-代数;(2)C1(U,L,R,D,V)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间,V是闭算子,L对称闭的;(3)C2b(U,R)或C3b(U,R)为一致闭(弱闭)的等价条件是U是Hibert空间H上的C*-代数(W*-代数),并且R是闭子空间。
3.
The concept of generalized T_derivation is introduced and the properties of T_derivations on pure algebra and operator algebras are obtained.
引进T_导子的概念 ,刻划了一般代数和算子代数上的T_导子的特征性质 。
6)  Operator algebra
算子代数
1.
The article discuss the K-theory of operator algebras.
本文研究了算子代数的K-理论。
2.
Let X be a Banach space over the real or complex field F, let M be a standard operator algebra on X with unit I.
X表示实数域或复数域F上的Banach空间,设M是X上的一个标准算子代数,I是M的单位元。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条