说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义正则闭集
1)  generalized regular closed sets
广义正则闭集
1.
The notions of strong generalized closed sets, generalized weak semiclosed sets and generalized regular closed sets are introduced in L_Fuzzy topological spaces.
提出了LF拓扑空间中强广义闭集、广义弱半闭集、广义正则闭集的概念 。
2)  Regular Closed Set
正则闭集
1.
The regular closed T rci(i=1,2) separation is introduced and characterized in LF topological spaces by using regular closed set.
利用正则闭集概念在LF拓扑空间中引入了正则闭分离性Tirc(i=1,2)概念,给出了它们的刻画,证明了正则闭Tirc(i=1,2)分离性为正则同胚性质和拓扑性质,在LF拓扑空间的半正则化中Tirc分离性与Ti分离性是等价的。
3)  Fuzzy Generalized Regular Implication Algebra
广义正则
1.
In this paper,the concept of Fuzzy Generalized Regular Implication Algebra is introduced.
通过引入模糊广义正则蕴涵代数的概念,对其性质进行了讨论,并给出了广义正则模糊蕴涵代数的一些等价刻画。
4)  strong generalized closed set
强广义闭集
1.
The notions of strong generalized closed sets, generalized weak semiclosed sets and generalized regular closed sets are introduced in L_Fuzzy topological spaces.
提出了LF拓扑空间中强广义闭集、广义弱半闭集、广义正则闭集的概念 。
5)  generalized L fuzzy closed set
广义LF闭集
6)  S-regular closed set
S正则闭集
补充资料:闭集


闭集
dosed set

闭集ld吹d肥t买姗.叮l说M“馏ec佃],拓扑空间中的 含有它的所有极限点〔见集合的极限点(】imjtpolnt of a set)、的集合.于是,闭集的补集的所有点都是内点,所以闭集可定义为开集的补集.闭集的概念是把拓扑空间定义为具有满足下列公理的特定集合系统〔所谓闭集)的作空集X的基础:X本身和空集是闭集;任意个闭集的交是闭集;有限个闭集的并是闭集.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条