说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义正则方程组
1)  generalized canonical equations
广义正则方程组
2)  generalized the regularized long wave equations
广义正则长波方程(GRLW)
3)  generalized Regularized Long-Wave equation
广义正则长波方程
1.
In this paper, an, implicit finite difference scheme is constructed for the initial-boundary value problem of a generalized Regularized Long-Wave equation.
本文对广义正则长波方程的初边值问题提出了—个隐式差分格式,该格式合理地模拟了方程本身所具有的两个守恒律。
4)  generalized symmetric regularized long wave equation
广义对称正则长波方程
1.
Explicit and exact analytic solutions to generalized symmetric regularized long wave equations;
广义对称正则长波方程的显式精确解析解
5)  generalized regularized long wave equation
广义正则化长波方程
6)  canonical systems
正则方程组
1.
Tree Hamiltonian canonical systems of four order rod vibration equation is obtained by substituting symmetry difference quotient for high order partial derivative.
本文用中心差商代替高阶偏导数, 将四阶杆振动方程转化成三种 Hamilton 正则方程组,然后利用辛欧拉中点格式分别对其数值求解,并对三种数值结果进行比较。
2.
The canonical systems of four order rod vibration equation is obtained by substituting symmetry difference quotient for high order partial derivative, and the numerical solution is computed by using symplectic Eulers mid-point scheme in this paper.
本文用中心差商代替高阶偏导数,将四阶杆振动方程转化成正则方程组,并利用辛欧拉中点格式数值求解。
补充资料:哈密顿正则方程
      经典力学中一组描写系统运动的一阶微分方程组。是W.R.哈密顿于1834年提出的,又称哈密顿方程或正则方程。哈密顿正则方程为 (1)
  式中H称为哈密顿函数,是广义动量pi和广义坐标qi及时间t的函数。H由式 (2)
  确定。括号外边的角标表示式中的妜i应该用N个方程pi= 解出N 个 妜i为 (E1,E2,...,EN;q1,q2,...,qN;t)的N 个函数,然后代入式(2)就得到哈密顿函数H。
  
  对于直角坐标变换到广义坐标的变换式虽然显含时间t,但是动能的表示式不明显地包含t,此时H=T2-T0+V,
  式中T2和T0可说明如下:用(E1,E2,...,EN;q1,q2,...,qN;t)表示的动能式T=T2+T1+T0,式中T2、T1和T0分别表示广义动量的二次齐次式、一次齐次式和不含广义动量的项。
  
  如果直角坐标变换到广义坐标的变换式不显含t,势函数V也不显含t,则
  
  T=T2,H=T+V。
  即对于保守系统,哈密顿函数是系统总机械能用广义动量表示的公式。
  
  正则方程式(1)是2N个一阶微分方程组,而拉格朗日方程是N个二阶微分方程组,都只适用于完整系统(见约束)的动力学方程组。
  
  由于式(1)的左边不再有变数q和p的导数,所以方程(1)成为如下形式的方程组
  
  
  
  保守系统的正则方程在天体力学和经典统计力学中有重要的应用。在天体力学中从可解的二体问题出发,逐渐添加其他星球的引力,可以把所用的哈密顿函数H,从简单改变成较复杂的 H┡。这是天体力学中的摄动法,用来解决考虑太阳和各种行星、卫星的引力作用下的行星运动,由此可制定行星和月球的星历表,在统计力学中的刘维定理就是应用正则方程推导出来的。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条