1) semi-generalized closed L-set
半广义闭L-集
1.
In this paper,we introduce the concepts of semi-generalized closed L-set and semi-generalized open L-set in L-space,and we prove that the union of two semi-generalized closed L-sets is a semi-generalized closed L-set and the image of a sg-closed L-set is a gf-closed L-set in closed and semicontinuous mapping,but in the same mapping the image of sg-open L-set is not gf-open.
引入半广义闭L-集和半广义开L-集,证明两个半广义闭L-集的并也是半广义闭L-集,同样还证明了在闭映射和半连续映射下,sg-闭L-集的像是gf-闭L-集,但是有例子表明,在闭映射和半连续映射下,sg-开L-集的像一般不再是gf-开L-集,此外还证明了闭L-集sg-闭L-集gf-闭L-集rgf-闭L-集,但是每个逆都是不真的。
2) semi-generalized open L-set
半广义开L-集
1.
In this paper,we introduce the concepts of semi-generalized closed L-set and semi-generalized open L-set in L-space,and we prove that the union of two semi-generalized closed L-sets is a semi-generalized closed L-set and the image of a sg-closed L-set is a gf-closed L-set in closed and semicontinuous mapping,but in the same mapping the image of sg-open L-set is not gf-open.
引入半广义闭L-集和半广义开L-集,证明两个半广义闭L-集的并也是半广义闭L-集,同样还证明了在闭映射和半连续映射下,sg-闭L-集的像是gf-闭L-集,但是有例子表明,在闭映射和半连续映射下,sg-开L-集的像一般不再是gf-开L-集,此外还证明了闭L-集sg-闭L-集gf-闭L-集rgf-闭L-集,但是每个逆都是不真的。
3) generalized weak semiclosed set
广义弱半闭集
1.
The notions of strong generalized closed sets, generalized weak semiclosed sets and generalized regular closed sets are introduced in L_Fuzzy topological spaces.
提出了LF拓扑空间中强广义闭集、广义弱半闭集、广义正则闭集的概念 。
4) strong generalized closed set
强广义闭集
1.
The notions of strong generalized closed sets, generalized weak semiclosed sets and generalized regular closed sets are introduced in L_Fuzzy topological spaces.
提出了LF拓扑空间中强广义闭集、广义弱半闭集、广义正则闭集的概念 。
5) generalized L fuzzy closed set
广义LF闭集
6) L-smooth strong semi-closed set
L-smooth强半闭集
1.
The concepts of L-smooth sr-remote neighbourhood,sr-cluster point and sr-limit point are given by means of L-smooth strong semi-closed sets in L-smooth topological spaces.
在L-smooth拓扑空间中借助于L-smooth强半闭集给出了L-smooth sr-远域、sr-附着点、sr-聚点等概念,并以此为基础讨论了分子网的sr-收敛理论,研究了它们的一些基本性质。
补充资料:闭集
闭集
dosed set
闭集ld吹d肥t买姗.叮l说M“馏ec佃],拓扑空间中的 含有它的所有极限点〔见集合的极限点(】imjtpolnt of a set)、的集合.于是,闭集的补集的所有点都是内点,所以闭集可定义为开集的补集.闭集的概念是把拓扑空间定义为具有满足下列公理的特定集合系统〔所谓闭集)的作空集X的基础:X本身和空集是闭集;任意个闭集的交是闭集;有限个闭集的并是闭集.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条