1) generalized regular ring
广义正则环
1.
If a ring R is generalized regular ring,then following conditions are shown to be equivalent: (1)R is strongly regular ring;(2)E(R)C(R);(3)ex=xe,for all e∈E(R),all x∈N(R);(4)N(R)C(R);(5)E(R) is closed under the multiplication in R;(6)E(R) is a weakly commutative.
R是广义正则环,以下条件等价:(1)R是强正则的,(2)E(R)C(R),(3)ex=xe,对所有e∈E(R),对所有x∈N(R),(4)N(R)∈C(R),(5)E(R)在R中关于乘法是封闭的,(6)E(R)是弱可换的。
2) right generalized semiregular rings
右广义半正则环
3) Generalized π-regular ring
广义π-正则环
4) generalized regular semiring
广义正则半环
1.
Semiring congruence on a class of generalized regular semiring;
一类广义正则半环上的半环同余的刻画
5) Fuzzy Generalized Regular Implication Algebra
广义正则
1.
In this paper,the concept of Fuzzy Generalized Regular Implication Algebra is introduced.
通过引入模糊广义正则蕴涵代数的概念,对其性质进行了讨论,并给出了广义正则模糊蕴涵代数的一些等价刻画。
6) generalized regular point
广义正则点
1.
It has been proved that the concept of generalized regular points of f,which is a generalization of the notion of regular points of f,has some crucial applications in nonlinearity and global analysis.
已经证明f的广义正则点概念是f的正则点概念的一个推广并且在非线性分析和大范围分析中有非常重要的应用。
补充资料:正则环
正则环
*-regular ring
‘正则环卜一佣.山r对l招;一pe口朋钾Oe劝则。J 带有对合反自同构俐~“*的正则环(仰Nh助-姗愈义下的)(比州肚nllg(谊the别级侣e ofvon卜犯u-~”,使得戊扩=0蕴涵“二0二正则环的幂等元。称为一个投影算子(p咧戊tor),若。*二。.,正则环的每个左(右)理想由唯一的投影算子生成.这样可以谈到·正则环的投影算子的格.若格是完全的,则是一个连续几何(contjnuous罗。能好).一个有齐次基“t,…,a。(。)4)的有补模格(m团过肚妞-石ce)(亦见有补格(】atti优俪伍comPlemet出))是有正交补的格,当且仅当它同构于某个,正则环的投影算子的格.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条