1) Galerkin
Galerkin
1.
Using Galerkin method and modified second energy method,we prove that if M(r) and g(u) satisfy some conditions and initial value is small enough,there exists a unique local solution.
利用Galerkin方法和改进的第二能量方法得到主要结果:当M(r),g(u)满足一定的条件且初值充分小,方程存在唯一局部解。
2.
In this paper we make use of multiscale wavelets that have vanishing moment as trial space basis, and purpose Galerkin Scheme for second kind integral equation with weakly kernel.
利用区间上具有消失矩性质的多尺度小波基底,构造Fredholm第二类积分方程Galerkin框架,提出相应的截断策略,并优化了收敛阶,使其收敛阶和计算复杂度到达到几乎最
3.
The method we used in this paper is the Galerkin method.
文中我们在对系统进行解的研究时,采用了Galerkin方法。
2) Galerkin method
Galerkin法
1.
Calculation of the Lower Order Vibration Frequency of Elastic Shallow thin Spherical Shell by means of Galerkin Method;
用Galerkin法求弹性扁薄球壳的低阶振动频率
2.
Galerkin Method of Elliptic Boundary Value Problem and Least-square Processing;
椭圆边值问题的Galerkin法及最小二乘法处理
3.
A theoretical calculation method of electrokinetic flow in micro equilateral triangle channels imposed with high electric field strength at both ends of channel was proposed based on the Galerkin method.
提出了微小三角形槽道内电渗流动理论计算方法,通过Galerkin法计算并分析了其内部的电势及速度分布,获得了温度、槽道尺寸、外加电势的电场强度、ζ电势以及电解质浓度对微小三角形槽道内电渗流动的影响规律。
3) Galerkin FEM
Galerkin FEM
4) Wavelet-Galerkin
Wavelet-Galerkin
1.
The Wavelet-Galerkin method for Burgers equation;
Burgers方程的Wavelet-Galerkin方法
2.
The Wavelet-Galerkin Method for Parabolic Equation;
抛物型方程的Wavelet-Galerkin方法
5) Galerkin solution
Galerkin解
1.
This paper solves elliptic boundary value problems by boundary element methods and mainly studies an extrapolation method for Poisson integral equation by means of Galerkin solution of this equation.
利用边界元方法求解椭圆边值问题,并通过Poisson积分方程的Galerkin解讨论了这种方程的外推算法,进而对边值问题的数值解获得了O(h3)精度的外推结果。
6) Petrov-Galekin
Petrov-Galerkin
参考词条
Galerkin方法
Taylor-Galerkin过程
Galerkin公式
Galerkin截断法
间断Galerkin法
Galerkin原理
Galerkin解法
Petrov-Galerkin方法
Galerkin截断
Galerkin直接法
小波-Galerkin法
谱Galerkin逼近
电流控制
波源模型
补充资料:法性属法为法性土
【法性属法为法性土】
谓真如法性之理,譬如虚空,遍一切处,乃是法身所证之体,即为所依之土,故名法性属法,为法性土。
谓真如法性之理,譬如虚空,遍一切处,乃是法身所证之体,即为所依之土,故名法性属法,为法性土。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。