1) gradation shifting toroidal Lie algebra
阶化平移toroidal李代数
2) Toroidal Lie algebra
Toroidal李代数
1.
The vertex operator representation for Toroidal Lie algebras of type ADE was first studied by Moody, Rao and Yokonuma in 1990.
ADE型Toroidal李代数的顶点算子表示首先由Moody,Rao和Yokonuma在1990年给出。
2.
In this paper, some properties about ideals, generators and derived algebra of Toroidal Lie algebra T are discussed.
给出了 Toroidal李代数的某些性质及多重 Loop代数的有限维不可约表示的分类和实现 。
3) graded Lie algebra
阶化李代数
1.
Simple filtered Lie algebras whose graded Lie algebras are isomorphic to Lie algebras G_n are discussed.
研究单的滤过李代数,使其相联阶化李代数同构于李代数Gn,得到这样的滤过李代数也同构于Gn。
4) universal graded Lie superalgebra
泛阶化李超代数
1.
By posing additional conditions on K-, other types of universal graded Lie superalgebras are defined and discussed.
对于给定的负阶化李超代数K-,本文定义了K-型泛阶化李超代数并证明了它的存在性。
5) Z2 graded Lie algebra
Z2×2阶化李代数
6) Z2×2 graded Lie algebra
Z2阶化李代数
补充资料:李下
1.李子树下。谓嫌疑之地。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条