1) array of independent random variables
独立随机变量阵列
1.
The sufficient conditions of the law of a logarithm for array of independent random variables are obtained,which extend some well-known results.
获得了独立随机变量阵列的对数律成立的一个充分条件,推广了已有的结果。
2) arrays of independent random variables
相互独立随机变量阵列
3) sequence of complex independent random variables
复值独立随机变量序列
1.
Several theorems about the relation between the sums of sequence of complex independent random variables and convergence are derived.
得到复值独立随机变量序列部分和同收敛性有关的几个定理。
2.
This paper derives several theorems concerning weak law of large numbers for sequence of complex independent random variables.
得到复值独立随机变量序列的几个弱大数定理。
3.
This paper derives several of theorems concerning strong law of large numbers and problems relative to it for sequence of complex independent random variables.
得到复值独立随机变量序列的几个强大数定理及有关定
5) independent random variables
独立随机变量
1.
On the Basis of a these results, the Egorov s results for independent random variables are generalized to the case of negatively associated random variables.
给出了具有不同分布的NA随机变量列满足的若干强大数律;作为应用,不仅将独立随机变量的一类强极限定理完整的推广到NA随机变量情形,而且关于NA随机变量的一些已有结果可以作为推论得出。
2.
According to the Wittman strong law of large numbers of independent random variables,the Wittman strong law of large numbers of PA random variables sequences is extanded so that some deductions are obtained in this paper.
文章根据独立随机变量序列的Wittmann型强大数律,推广到PA序列的Wittmann型强大数律,并且由此得到一些相关的推论。
3.
In this paper,we consider asymptotic structure for the product of partial sums of independent random variables.
假设X1,X2,…,Xn,…为二阶矩存在的非负独立随机变量列,证明收敛性nk=1!μSkk"#1γk$%1&Tn→d e&2N成立,其中N是标准正态随机变量,Sk=ki=1(Xi,μk=E(Sk),σk=Var(Sk),γk=σk/μk,且Tn=nk=1(k/σk。
6) Independent Random Variable
独立随机变量
1.
Central Limit Theorems of Independent Random Variables;
独立随机变量的中心极限定理
2.
Formula of density function of sum of independent random variable of uniform distribution;
服从均匀分布的多个独立随机变量和的密度函数公式
3.
Let {Xn,n≥1} be independent random variables in a real separable Banach space,and the Chung-Teicher type conditions for the SLLN under the assumptions that the weak laws of large numbers hold were doscissed,which is b-1n∑nk=1(Xk-EXkI(‖Xk‖≤bk))p0 holds if and only if b-1n∑nk=1(Xk-EXkI(‖Xk‖≤bk))a.
设{Xn,n≥1}是实可分Banach空间独立随机变量,讨论了在弱大数律的假设下使得Chung-Teicher型强大数律也成立,即bn-1∑nk=1(Xk-EXkI(‖Xk‖≤bk))p0当且仅当bn-1∑nk=1(Xk-EXkI(‖Xk‖≤bk))a。
补充资料:独立
【诗文】:
空外一鸷鸟,河间双白鸥。飘飖搏击便,容易往来游。
草露亦多湿,蛛丝仍未收。天机近人事,独立万端忧。
【注释】:
【出处】:
全唐诗:卷225_73全唐诗:卷225_73
空外一鸷鸟,河间双白鸥。飘飖搏击便,容易往来游。
草露亦多湿,蛛丝仍未收。天机近人事,独立万端忧。
【注释】:
【出处】:
全唐诗:卷225_73全唐诗:卷225_73
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条