说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 独立连续随机变量
1)  independent continuous random variable
独立连续随机变量
2)  independent random variables
独立随机变量
1.
On the Basis of a these results, the Egorov s results for independent random variables are generalized to the case of negatively associated random variables.
给出了具有不同分布的NA随机变量列满足的若干强大数律;作为应用,不仅将独立随机变量的一类强极限定理完整的推广到NA随机变量情形,而且关于NA随机变量的一些已有结果可以作为推论得出。
2.
According to the Wittman strong law of large numbers of independent random variables,the Wittman strong law of large numbers of PA random variables sequences is extanded so that some deductions are obtained in this paper.
文章根据独立随机变量序列的Wittmann型强大数律,推广到PA序列的Wittmann型强大数律,并且由此得到一些相关的推论。
3.
In this paper,we consider asymptotic structure for the product of partial sums of independent random variables.
假设X1,X2,…,Xn,…为二阶矩存在的非负独立随机变量列,证明收敛性nk=1!μSkk"#1γk$%1&Tn→d e&2N成立,其中N是标准正态随机变量,Sk=ki=1(Xi,μk=E(Sk),σk=Var(Sk),γk=σk/μk,且Tn=nk=1(k/σk。
3)  Independent Random Variable
独立随机变量
1.
Central Limit Theorems of Independent Random Variables;
独立随机变量的中心极限定理
2.
Formula of density function of sum of independent random variable of uniform distribution;
服从均匀分布的多个独立随机变量和的密度函数公式
3.
Let {Xn,n≥1} be independent random variables in a real separable Banach space,and the Chung-Teicher type conditions for the SLLN under the assumptions that the weak laws of large numbers hold were doscissed,which is b-1n∑nk=1(Xk-EXkI(‖Xk‖≤bk))p0 holds if and only if b-1n∑nk=1(Xk-EXkI(‖Xk‖≤bk))a.
设{Xn,n≥1}是实可分Banach空间独立随机变量,讨论了在弱大数律的假设下使得Chung-Teicher型强大数律也成立,即bn-1∑nk=1(Xk-EXkI(‖Xk‖≤bk))p0当且仅当bn-1∑nk=1(Xk-EXkI(‖Xk‖≤bk))a。
4)  sum of independent random variables
独立随机变量和
5)  continuous type random variable
连续型随机变量
1.
,x n) of multidimensional continuous type random variables is  nx 1.
多维连续型随机变量的分布函数F(x1 ,… ,xn)与密度函数f(x1 ,… ,xn)的关系是 n x1 … xnF(x1 ,… ,xn) =f(x1 ,… ,xn) ,dF(x1 ,… ,xn) =f(x1 ,… ,xn)dx1 …dxn。
6)  continuous random variable
连续型随机变量
1.
Probability density of function of continuous random variable under non one to one correspondence;
非1-1对应时连续型随机变量函数的概率密度
2.
The notion of likelihood ratio as the random measure of deviation between continuous random variables and multiplicative power function distribution is introduced, and by using the theory of martingale and the method of analysis,we get a new type of strong law of large numbers, a.
利用似然比概念作为一般连续型随机变量相对于乘积幂函数分布的偏差的一种随机性度量,运用鞅方法及分析方法,得到了一种新形式的强大数定理,即关于随机变量几何平均 Gn(ω )=的强极限定理。
3.
In this paper,we mainly discussed the function distribution about continuous random variable’s plus、minus、times and division,through the relation between distribution function and probability density function,and then researched the method of finding the function distribution about some continuous random variable by using the method of integration.
利用分布函数与概率密度函数之间的关系,讨论了二维连续型随机变量的加、减、乘、除等函数分布,研究了常见的二维连续型随机变量函数分布的求解方法。
补充资料:独立
【诗文】:
空外一鸷鸟,河间双白鸥。飘飖搏击便,容易往来游。
草露亦多湿,蛛丝仍未收。天机近人事,独立万端忧。



【注释】:



【出处】:
全唐诗:卷225_73全唐诗:卷225_73
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条