1) Banach space valued independence random variable
Banach空间值独立随机变量序列
1.
The Hàjek-Rènyi inequality for Banach space valued independence random variables is proved.
证明了Banach空间值独立随机变量序列的Hàjek-Rènyi型不等式,并利用该不等式证明了Banach空间值独立随机变量序列的强大数定律,所得结果刻画了Banach空间的p型性质。
2) sequence of complex independent random variables
复值独立随机变量序列
1.
Several theorems about the relation between the sums of sequence of complex independent random variables and convergence are derived.
得到复值独立随机变量序列部分和同收敛性有关的几个定理。
2.
This paper derives several theorems concerning weak law of large numbers for sequence of complex independent random variables.
得到复值独立随机变量序列的几个弱大数定理。
3.
This paper derives several of theorems concerning strong law of large numbers and problems relative to it for sequence of complex independent random variables.
得到复值独立随机变量序列的几个强大数定理及有关定
3) sequence of complex idd random variables
复值独立同分布随机变量序列
5) Independent random variables sequence
独立随机变数序列
补充资料:随机变量
随机变量 random variable 表示随机现象各种结果的变量。例如某一时间内公共汽车站等车乘客的人数,电话交换台在一定时间内收到的呼叫次数,等等,都是随机变量的实例。 一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω 。 随机变量X是定义在基本空间Ω上的取值为实数的函数,即基本空间Ω中每一个点,也就是每个基本事件都有实轴上的点与之对应。例如,随机投掷一枚硬币 ,可能的结果有正面朝上 ,反面朝上两种 ,若定义X为投掷一枚硬币时正面朝上的次数 , 则X为一随机变量,当正面朝上时,X取值1;当反面朝上时,X取值0。又如,掷一颗骰子 ,它的所有可能结果是出现1点、2点、3点、4点、5点和6点 ,若定义X为掷一颗骰子时出现的点数,则X为一随机变量,出现1,2,3,4,5,6点时X分别取值1,2,3,4,5,6。 要全面了解一个随机变量,不但要知道它取哪些值,而且要知道它取这些值的规律,即要掌握它的概率分布。概率分布可以由分布函数刻画。若知道一个随机变量的分布函数,则它取任何值和它落入某个数值区间内的概率都可以求出。 有些随机现象需要同时用多个随机变量来描述。例如 ,弹着点的位置需要两个坐标才能确定,它是一个二维随机变量。类似地,需要n个随机变量来描述的随机现象中,这n个随机变量组成n维随机向量 。描述随机向量的取值规律 ,用联合分布函数。随机向量中每个随机变量的分布函数,称为边缘分布函数。若联合分布函数等于边缘分布函数的乘积 ,则称这些单个随机变量之间是相互独立的。独立性是概率论所独有的一个重要概念。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条