说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 独立对称随机变量
1)  independent symmetrial random vector
独立对称随机变量
2)  independent random variables
独立随机变量
1.
On the Basis of a these results, the Egorov s results for independent random variables are generalized to the case of negatively associated random variables.
给出了具有不同分布的NA随机变量列满足的若干强大数律;作为应用,不仅将独立随机变量的一类强极限定理完整的推广到NA随机变量情形,而且关于NA随机变量的一些已有结果可以作为推论得出。
2.
According to the Wittman strong law of large numbers of independent random variables,the Wittman strong law of large numbers of PA random variables sequences is extanded so that some deductions are obtained in this paper.
文章根据独立随机变量序列的Wittmann型强大数律,推广到PA序列的Wittmann型强大数律,并且由此得到一些相关的推论。
3.
In this paper,we consider asymptotic structure for the product of partial sums of independent random variables.
假设X1,X2,…,Xn,…为二阶矩存在的非负独立随机变量列,证明收敛性nk=1!μSkk"#1γk$%1&Tn→d e&2N成立,其中N是标准正态随机变量,Sk=ki=1(Xi,μk=E(Sk),σk=Var(Sk),γk=σk/μk,且Tn=nk=1(k/σk。
3)  Independent Random Variable
独立随机变量
1.
Central Limit Theorems of Independent Random Variables;
独立随机变量的中心极限定理
2.
Formula of density function of sum of independent random variable of uniform distribution;
服从均匀分布的多个独立随机变量和的密度函数公式
3.
Let {Xn,n≥1} be independent random variables in a real separable Banach space,and the Chung-Teicher type conditions for the SLLN under the assumptions that the weak laws of large numbers hold were doscissed,which is b-1n∑nk=1(Xk-EXkI(‖Xk‖≤bk))p0 holds if and only if b-1n∑nk=1(Xk-EXkI(‖Xk‖≤bk))a.
设{Xn,n≥1}是实可分Banach空间独立随机变量,讨论了在弱大数律的假设下使得Chung-Teicher型强大数律也成立,即bn-1∑nk=1(Xk-EXkI(‖Xk‖≤bk))p0当且仅当bn-1∑nk=1(Xk-EXkI(‖Xk‖≤bk))a。
4)  sum of independent random variables
独立随机变量和
5)  symmetric independently scattered random measure
对称独立散射随机测度
6)  symmetric random variable
对称随机变量
1.
It gives arithemtric mean-geometric mean-expected inequalities of symmetric random variable,which imply Kantorovich inequalities.
该文定义了对称随机变量及随机变量的算术平均与几何平均,并建立了对称随机变量的算术平均——几何平均——期望不等式,将康托洛维奇不等式作为推论导出。
补充资料:水文随机变量
      受随机因素影响,遵循统计规律变化的水文变量。水文随机变量在未来任一时刻出现的数值无法准确预测,但能以分布函数(或等价的概率密度函数)来反映其统计规律性,也就是表示其各种数值出现的可能性。分布函数的形式,可根据资料按水文统计学的有关原理和方法予以确定。分布函数与概率密度函数则有如下关系:
  
  式中x为随机变量;F(xp;)为分布函数; f(t;θ)为概率密度函数;为x大于或等于xp这一事件出现的概率;xp称为x的p分位数,或超过概率为p的设计值。上式常以图形的方式表示,称为频率曲线(见图)。
  
  
  确定水文随机变量的分布函数及其所含的参数,是研究水文随机变量的主要目的。水文学中常用的分布函数有以下几种:皮尔逊Ⅲ型分布、对数皮尔逊Ⅲ型分布、对数正态分布、 概化极值分布、 韦克贝分布、克里茨基-门克尔分布等。在中国主要使用皮尔逊Ⅲ型分布。其概率密度函数如下:
  
  x≥α γ0
  式中α、β、γ 为待估参数;Γ(γ )为伽玛函数。三个参数α、β、γ 与随机变数 x的三个主要数字特征值(数学期望Ex、方差σ婌、偏态系数Cs)有一定的关系,可相互推求。这种情况对其他分布也是如此。不过不同的分布,参数与特征值之间的关系不同而已。在参数估计时,有的方法,如极大似然法,是先估计参数α、β、γ ,然后由有关公式可求得相应的Ex、Cv(离势系数)与Cs;有的方法,如矩法或适线法,是先估计出Ex、Cv及Cs,需要时,可由有关公式求出相应的参数值。
  
  确定水文随机变量分布函数的形式,除用上述假设检验的方法外(见水文统计学),还使用导出分布的方法,即考虑水文变量的物理性质并做若干假定,再经推导而得。其中又可分为依据事件的模型和联合概率的模型。由于问题复杂,为便于推导而作的假定常与实际情形相差较远,故此种途径尚处于研究阶段,有时可在缺乏资料的小流域上应用。
  
  

参考书目
   V.Yevjevich, Probability and Statistics in Hydrology,Water Resources Publications,FortCollins,Colorado,1972.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条