1) electroless processing
化学淀积
2) Electrochemical deposition
电化学淀积
1.
An efficient carbon nanotubes(CNTs) field emission cathode has been successfully fabricated by combining electrophoresis and by electrochemical deposition technology.
采用电泳法将碳纳米管组装到电化学淀积的银台阵列上作为场发射阴极并研究了它的场发射特性。
3) photodeposition
光化学淀积
4) CVD
化学气相淀积
1.
Development of double-chamber UHV/CVD system;
双生长室超高真空化学气相淀积系统的研制
2.
The applications of CVD in the preparations of ultrafine powders,nanocompositers,and functionally gradient materials were discussed,the processing features of CVD,the properties and the microstructures of the materials thus prepared were analyzed with specific examples.
本文讨论了化学气相淀积在超细粉,纳米复合材料及梯度功能材料制备中的应用,并结合实例分析了化学气相淀积的工艺特性及所制备材料的性能、显微组织特点。
3.
12%,were epitaxially deposited on Si(100) substrates via chemical vapor deposition(CVD) process,using C2H4 and SiH4 as C and Si resources,respectively.
用化学气相淀积方法,以乙烯为碳源、硅烷为硅源,在Si(100)衬底上外延生长了替位式C组分达1。
5) chemical vapor deposition
化学汽相淀积
1.
The design of system and technology for depositing silicon-nitride film microlenses by laser chemical vapor deposition (LCVD) are introduced.
本文介绍了采用激光化学汽相淀积(LCVD)技术淀积氮化硅薄膜微透镜的系统与工艺的设计。
6) chemical vapor deposition
化学气相淀积
1.
Porous γ -Al 2O 3 ceramic membranes were modified by atomic layer chemical vapor deposition technique.
采用原子层控制生长化学气相淀积方法对多孔γ -Al2 O3陶瓷膜进行缩孔修饰研究 。
2.
SiCl_4 and NH_3 as its precursors ,amorphous Si_3N_4 ultrafine powder was synthesized with high purity and narrow size distribution by radio frequency plasma chemical vapor deposition.
利用高频等离子体化学气相淀积方法以四氯化硅及氨为原料,合成了粒度小、粒径分布均匀、氮含量为36。
3.
Ultrafine AIN powder was synthesized by chemical vapor deposition of anhydrous AlCl_3 and NH_3 at 700~1000℃.
在700~1000℃下,用无水AlCl_3和NH_3的化学气相淀积反应合成得到了AlN超细粉末,并研究了反应温度、总流量、AlCl_3浓度等对AlN粉末理化性质的影响。
补充资料:电化学动力学
由于电化学的反应必须在电极的金属|电解质界面上才能进行,电化学动力学的主要对象是电极反应动力学。电极反应是一种非均相化学反应,所以电极反应动力学的方法与非均相化学反应动力学很类似。它的反应历程必须包括金属|电解质界面上的迁越步骤(见迁越超电势)和扩散步骤(见扩散超电势)。迁越步骤是电极反应区别于其他非均相化学反应的标志,是电极反应的基本步骤。为使迁越步骤能持续进行,反应物必须从电解质本体扩散到电极界面;生成物也必须扩散离去,这是与非均相化学反应类似的。此外,在液相电解质中也可能在迁越步骤的前后发生前置反应和后续反应等化学反应步骤。在电极金属表面也可能发生固相的形成和溶解步骤。如果形成的物相是金属,这就是电(沉)积过程(见电镀);如果是绝缘体或半导体,则电极金属可能被钝化(见金属钝化)或产生光电效应(见光电化学和半导体电化学)。特别要提出的是在电极界面上经常发生的吸附现象,它能改变电极界面结构并对电极过程产生明显的干扰。它可以促进化学反应(见电催化),也可以阻滞电极反应,如金属腐蚀中缓蚀剂的作用。
以上各步骤所需的超电势可以分别称为迁越超电势ηCT、扩散超电势ηd、反应超电势ηr(ηd和 ηr合称为浓差极化)等等。电极反应总的超电势应是各串联步骤超电势之和,其中"速控步骤"的超电势是主导的。但在实际测量过程中,电极电势(位)是相对于某一参比电极进行测量的,在参比电极的鲁金毛细管口到工作电极的金属表面这一段距离间,通电时存在欧姆电势(即电位降,停电时消失),这就是电阻极化。电阻极化是因电解液的电阻(与电池的设计有关)和可能存在的金属表面被膜的电阻引起的,它与电极反应无关,故计算总超电势时应予扣除,或在测量时进行校正。
总之,电极反应往往是相当复杂的过程。电极反应动力学的任务就是根据实验事实,包括利用各种稳态技术和暂态技术的电化学研究方法获得的各类极化曲线(见极化和超电势)和电化学参数,以及利用各种非电化学方法所得信息,推断反应历程和"速率控制步骤"(简称速控步骤),得出动力学方程,并与根据动力学理论得到的各个基元步骤的动力学特征进行对比,从而推论出合理的电极反应机理,以便最终为生产实际提供控制电化学过程的依据。
参考书目
查全性著:《电极过程动力学导论》,科学出版社,北京,1976。
以上各步骤所需的超电势可以分别称为迁越超电势ηCT、扩散超电势ηd、反应超电势ηr(ηd和 ηr合称为浓差极化)等等。电极反应总的超电势应是各串联步骤超电势之和,其中"速控步骤"的超电势是主导的。但在实际测量过程中,电极电势(位)是相对于某一参比电极进行测量的,在参比电极的鲁金毛细管口到工作电极的金属表面这一段距离间,通电时存在欧姆电势(即电位降,停电时消失),这就是电阻极化。电阻极化是因电解液的电阻(与电池的设计有关)和可能存在的金属表面被膜的电阻引起的,它与电极反应无关,故计算总超电势时应予扣除,或在测量时进行校正。
总之,电极反应往往是相当复杂的过程。电极反应动力学的任务就是根据实验事实,包括利用各种稳态技术和暂态技术的电化学研究方法获得的各类极化曲线(见极化和超电势)和电化学参数,以及利用各种非电化学方法所得信息,推断反应历程和"速率控制步骤"(简称速控步骤),得出动力学方程,并与根据动力学理论得到的各个基元步骤的动力学特征进行对比,从而推论出合理的电极反应机理,以便最终为生产实际提供控制电化学过程的依据。
参考书目
查全性著:《电极过程动力学导论》,科学出版社,北京,1976。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条