说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 超奇异Marcinkiewicz积分
1)  hyper Marcinkiewicz integral
超奇异Marcinkiewicz积分
2)  hypersingular integral
超奇异积分
1.
Generally, there exists difficulty on the application of derivative BIE because of the puzzle of the evaluation of hypersingular integrals.
弹性理论中有几类不同的位移导数边界积分方程 ,本文采用算子δij和∈ij(排列张量 )作用于这些导数边界积分方程 ,做一系列变换 ,原有的超奇异积分被正则化为强奇异积分获解。
3)  hypersingular integral equation
超奇异积分
1.
This work presents the hypersingular integral equation method to analyze the multiple three-dimensional cracks problem in fully coupled electromagnetothermoelastic multiphase composites under extended electro-magneto-thermo-elastic coupled loading through intricate theoretical analysis and numerical simulations.
用超奇异积分方程法将多场耦合载荷作用下磁电热弹耦合材料内含任意形状和位置三维多裂纹问题转化为求解一以广义位移间断为未知函数的超奇异积分方程组问题,退化得到内含任意形状平行三维多裂纹问题的超奇异积分方程组;推导出平行三维多裂纹问题的裂纹前沿广义奇异应力场解析表达式、定义了广义(应力、应变能)强度因子和广义能量释放率;应用有限部积分概念及体积力法,为超奇异积分方程组建立了数值求解方法,编制了FORTRAN程序,以平行双裂纹为例,通过典型算例,研究了广义(应力、应变能)强度因子随裂纹位置、裂纹形状及材料参数变化规律,得到裂纹断裂评定准则。
2.
This paper proposes a hypersingular integral equation method to analyze the three-dimensional mixed-mode crack perpendicular to the interface in anisotropic electromagnetoelastic(EME)bimaterials under extended electro-magneto-elastic coupled loads through theoretical analysis and numerical simulations.
应用有限部积分概念和广义位移基本解,垂直于磁压电双材料界面三维复合型裂纹问题被转化为求解一组以裂纹表面广义位移间断为未知函数的超奇异积分方程问题。
3.
Based on investigation of the linear elastic crack problems,a time-domain hypersingular integral equation(TD-HIE)method is applied to solve a three-dimensional crack growth problems in electro-magneto-thermo-elastic coupled viscoplastic multiphase composites.
在线弹性裂纹研究基础上,将热-粘弹塑性对控制方程和边界条件的非线性影响作为伪载荷处理,使得粘弹塑项以伪体积力和伪面力形式出现,进而将磁电热弹耦合材料三维单裂纹扩展问题转化为解时域超奇异积分方程问题。
4)  hypersingular integral equation
超奇异积分方程
1.
Using Somigiliana's formula, the general solutions and hypersingular integral equations for a three-dimensional impermeable crack problem in an infinite transversely isotropic piezoelectric solid under mechanical and electrical loads are given.
采用Somigiliana公式给出了三维横观各向同性压电材料中的非渗漏裂纹问题的一般解和超奇异积分方程,其中未知函数为裂纹面上的位移间断和电势间断。
2.
As the cracks lie in one side of the bimaterial plane,the problem is reduced with finite-part integral conceptions to a set of hypersingular integral equations,in which the unknown functions are the displacement discontinuities on the crack surfaces.
基于双材料平面问题的弹性力学基本解,使用边界积分方程方法,在有限部积分的意义下,将双材料平面单侧多裂纹问题归结为1组以裂纹面位移间断为未知函数的超奇异积分方程组,根据有限部积分原理为其建立了数值算法,并给出了相应的应力强度因子计算公式。
3.
In this paper, the problem of an arbitrarily shaped planar crack which is perpendicular to the interface of bimaterial and loaded by interior normal pressure is studied by means of the method of hypersingular integral equation in three dimensional fracture mechanics.
利用三维断裂力学的超奇异积分方程方法,对双材料空间中重直于界面的平片裂纹Ⅰ型问题进行了研究。
5)  Hyper-singular integral equation
超奇异积分方程
1.
To simplify the calculations of wheel-rail contact force and governing equations,a surface crack problem in a semi-infinite space was reduced to solving a set of hyper-singular integral equations with displacement jumps as unknown functions.
为简化轮轨接触力和控制方程的计算,利用Hadamard有限部积分的概念,将半空间表面裂纹问题归化为求解一组以位移间断作为未知函数的超奇异积分方程;采用边界元法离散该积分方程组,并对方程组中出现的超奇异积分提出了特殊的数值处理方法。
2.
A radial crack in an elastic plane with a circular inclusion is investigated by use of a hyper-singular integral equation method.
根据含圆形嵌体平面问题在极坐标下的弹性力学基本解,使用Betti互换定理,在有限部积分意义下将问题归结为两个以裂纹岸位移间断为基本未知量、对于Ⅰ型和Ⅱ型问题相互独立的超奇异积分方程,对含圆形嵌体弹性平面中的径向裂纹问题进行了研究。
3.
Based on the fundamental solution of the elastic mechanics on the half-plane body with free boundary,and using Bitt s low, the stress-displacement relation, Hooke s low, and the stress boundary condition of the crack, the hyper-singular integral equations to describe this problem was \{derived\}; through suitable integral transforms, we established the correspondi.
对固定边半平面含平行于边界裂纹的问题进行研究,由固定边半平面弹性体的弹性力学基本解,利用换功定律、位移-应变关系、胡克定律及裂纹岸应力边界条件,得到描述该问题的超奇异积分方程组,并通过适当的积分变换,在有限部积分的意义下建立了相应的数值方法。
6)  hypersingular integral equations
超奇异积分方程
1.
Then,this crack problem is reduced to solving a set of hypersingular integral equations coupled with boundary integral equations.
应用位移基本解,磁电热弹材料三维裂纹问题被转化为求解一组以裂纹表面位移间断为未知函数的超奇异积分方程问题。
2.
Using Kelvin s solutions and the concepts of finite-part integral,a set of hypersingular integral equations to solve the inclusion problems in two dimension elasticity is derived,and its numerical method is then proposed by combining the finite-part integral method with the boundary element method.
利用Kelvin解及有限部积分的概念和方法,导出求解含夹杂二维有限弹性体的超奇异积分方程,继而使用有限部积分与边界元结合的方法,为其建立了数值求解方法,即有限部积分与边界元法。
3.
Using the concepts and method of finite-part integrals, the hypersingular integral equations of a plane crack loaded by arbitrary loads is proved exactly.
本文利用有限部积分的概念和方法,严格地证明了三维弹性体中受任意载荷作用的平片裂纹问题的超奇异积分方程组,并对未知解的性态作了理论分析,得到了性态指数,在此基础上通过主部分析,精确地求得了裂纹前沿光滑点附近的奇性应力场,从而找到了以裂纹面位移间断(位错)表示的应力强度因子表达式,最后对所得的超奇异积分方程组建立了数值法,并用此计算了若干典型的平片裂纹问题,数值结果令人满意。
补充资料:delaVallée-Poussin奇异积分


delaVallée-Poussin奇异积分
e la Vallee- Poussin singular integral

山hV叨触一P仪.菌n奇异积分【deh、7al应~P侧目n血-多面了加雌阳】;Ba月月e一flyeeeoac“Hry月,PHM.““Ter-pa月」 形式为 。‘、::、一李,萝理牛i、(x十:)cosZ·冬己。 乙兀L小一1)::戈的积分(亦见de h Vall倪一P侧对n求和法(de h vall‘e-Po哪insumrrntionmethod)).对于在(一的,田)上连续的、以2二为周期的函数f林),序列气(f;x)一致收敛于f(x)(【1」).如果在点x上 (父,(!)比今}一,(·,,则当。~的时,玖(f;x)~f(x),下列等式成立(12」): 。。、:,、一、(x、一工竺工主)、。「生1. 刀Ln」[补注]符号(Zm)!!表示Zm(2m一2)二2(m项),(2脚一1)!!二(2m一z)(Zm一3)二弓(m项),因此, (2n)!!二2,”(n!), (知一l)!!(Zn)!
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条