1) nearly hyper-singular integrals
几乎超奇异积分
2) nearly singular integral
几乎奇异积分
1.
Regularization integral algorithm of nearly singular integrals based on the BEM of thermoelasticity with quadratic elements;
热弹性力学边界元中二次元的几乎奇异积分计算
2.
Regularization of nearly singular integrals in the boundary element method for three dimensional acoustic problems
三维声场问题边界元法中几乎奇异积分的正则化
3.
The nearly singular integrals in the boundary element analysis of coated structures are transformed into the analytic expressions by means of integration by parts.
建立了涂层构件边界元法,并引入解析化算法处理其中的几乎奇异积分,以分析赫兹压力作用下涂层构件的力学行为;提出以最大切应力作为涂层结构强度的评判标准;分别讨论了涂层尺寸和涂层/基体材料的变化对最大切应力的影响,找出了受赫兹压力作用涂层构件的强度危险面。
3) nearly singular integrals
几乎奇异积分
1.
Analytical algorithm of the nearly singular integrals in boundary element method to anisotropic potential problems;
各向异性位势问题边界元法中几乎奇异积分的解析算法
2.
The calculation of the parameters at interior points close to the roller boundary yields the nearly singular integrals, which can not be obta.
文章在小变形、不计惯性力及摩擦力服从库仑摩擦定律的前提下,采用凝聚法计算大大缩短了迭代时间;针对边界元法中近边界点的几乎奇异积分,文中采用一种新的正则化技术,将奇异积分化为无奇异的规则积分与解析积分之和,成功地求解了滚柱内近边界点的力学参量。
3.
The difficulty of the treatment of the nearly singular integrals hindered applications of Boundary Element Method(BEM).
几乎奇异积分的计算困难阻碍了边界元法的工程应用。
4) hypersingular integral
超奇异积分
1.
Generally, there exists difficulty on the application of derivative BIE because of the puzzle of the evaluation of hypersingular integrals.
弹性理论中有几类不同的位移导数边界积分方程 ,本文采用算子δij和∈ij(排列张量 )作用于这些导数边界积分方程 ,做一系列变换 ,原有的超奇异积分被正则化为强奇异积分获解。
5) hypersingular integral equation
超奇异积分
1.
This work presents the hypersingular integral equation method to analyze the multiple three-dimensional cracks problem in fully coupled electromagnetothermoelastic multiphase composites under extended electro-magneto-thermo-elastic coupled loading through intricate theoretical analysis and numerical simulations.
用超奇异积分方程法将多场耦合载荷作用下磁电热弹耦合材料内含任意形状和位置三维多裂纹问题转化为求解一以广义位移间断为未知函数的超奇异积分方程组问题,退化得到内含任意形状平行三维多裂纹问题的超奇异积分方程组;推导出平行三维多裂纹问题的裂纹前沿广义奇异应力场解析表达式、定义了广义(应力、应变能)强度因子和广义能量释放率;应用有限部积分概念及体积力法,为超奇异积分方程组建立了数值求解方法,编制了FORTRAN程序,以平行双裂纹为例,通过典型算例,研究了广义(应力、应变能)强度因子随裂纹位置、裂纹形状及材料参数变化规律,得到裂纹断裂评定准则。
2.
This paper proposes a hypersingular integral equation method to analyze the three-dimensional mixed-mode crack perpendicular to the interface in anisotropic electromagnetoelastic(EME)bimaterials under extended electro-magneto-elastic coupled loads through theoretical analysis and numerical simulations.
应用有限部积分概念和广义位移基本解,垂直于磁压电双材料界面三维复合型裂纹问题被转化为求解一组以裂纹表面广义位移间断为未知函数的超奇异积分方程问题。
3.
Based on investigation of the linear elastic crack problems,a time-domain hypersingular integral equation(TD-HIE)method is applied to solve a three-dimensional crack growth problems in electro-magneto-thermo-elastic coupled viscoplastic multiphase composites.
在线弹性裂纹研究基础上,将热-粘弹塑性对控制方程和边界条件的非线性影响作为伪载荷处理,使得粘弹塑项以伪体积力和伪面力形式出现,进而将磁电热弹耦合材料三维单裂纹扩展问题转化为解时域超奇异积分方程问题。
6) hypersingular integral equation
超奇异积分方程
1.
Using Somigiliana's formula, the general solutions and hypersingular integral equations for a three-dimensional impermeable crack problem in an infinite transversely isotropic piezoelectric solid under mechanical and electrical loads are given.
采用Somigiliana公式给出了三维横观各向同性压电材料中的非渗漏裂纹问题的一般解和超奇异积分方程,其中未知函数为裂纹面上的位移间断和电势间断。
2.
As the cracks lie in one side of the bimaterial plane,the problem is reduced with finite-part integral conceptions to a set of hypersingular integral equations,in which the unknown functions are the displacement discontinuities on the crack surfaces.
基于双材料平面问题的弹性力学基本解,使用边界积分方程方法,在有限部积分的意义下,将双材料平面单侧多裂纹问题归结为1组以裂纹面位移间断为未知函数的超奇异积分方程组,根据有限部积分原理为其建立了数值算法,并给出了相应的应力强度因子计算公式。
3.
In this paper, the problem of an arbitrarily shaped planar crack which is perpendicular to the interface of bimaterial and loaded by interior normal pressure is studied by means of the method of hypersingular integral equation in three dimensional fracture mechanics.
利用三维断裂力学的超奇异积分方程方法,对双材料空间中重直于界面的平片裂纹Ⅰ型问题进行了研究。
补充资料:delaVallée-Poussin奇异积分
delaVallée-Poussin奇异积分
e la Vallee- Poussin singular integral
山hV叨触一P仪.菌n奇异积分【deh、7al应~P侧目n血-多面了加雌阳】;Ba月月e一flyeeeoac“Hry月,PHM.““Ter-pa月」 形式为 。‘、::、一李,萝理牛i、(x十:)cosZ·冬己。 乙兀L小一1)::戈的积分(亦见de h Vall倪一P侧对n求和法(de h vall‘e-Po哪insumrrntionmethod)).对于在(一的,田)上连续的、以2二为周期的函数f林),序列气(f;x)一致收敛于f(x)(【1」).如果在点x上 (父,(!)比今}一,(·,,则当。~的时,玖(f;x)~f(x),下列等式成立(12」): 。。、:,、一、(x、一工竺工主)、。「生1. 刀Ln」[补注]符号(Zm)!!表示Zm(2m一2)二2(m项),(2脚一1)!!二(2m一z)(Zm一3)二弓(m项),因此, (2n)!!二2,”(n!), (知一l)!!(Zn)!
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条