1) hyper-singular integral-differential equation
超奇异积分-微分方程
2) hypersingular integral equation
超奇异积分方程
1.
Using Somigiliana's formula, the general solutions and hypersingular integral equations for a three-dimensional impermeable crack problem in an infinite transversely isotropic piezoelectric solid under mechanical and electrical loads are given.
采用Somigiliana公式给出了三维横观各向同性压电材料中的非渗漏裂纹问题的一般解和超奇异积分方程,其中未知函数为裂纹面上的位移间断和电势间断。
2.
As the cracks lie in one side of the bimaterial plane,the problem is reduced with finite-part integral conceptions to a set of hypersingular integral equations,in which the unknown functions are the displacement discontinuities on the crack surfaces.
基于双材料平面问题的弹性力学基本解,使用边界积分方程方法,在有限部积分的意义下,将双材料平面单侧多裂纹问题归结为1组以裂纹面位移间断为未知函数的超奇异积分方程组,根据有限部积分原理为其建立了数值算法,并给出了相应的应力强度因子计算公式。
3.
In this paper, the problem of an arbitrarily shaped planar crack which is perpendicular to the interface of bimaterial and loaded by interior normal pressure is studied by means of the method of hypersingular integral equation in three dimensional fracture mechanics.
利用三维断裂力学的超奇异积分方程方法,对双材料空间中重直于界面的平片裂纹Ⅰ型问题进行了研究。
3) Hyper-singular integral equation
超奇异积分方程
1.
To simplify the calculations of wheel-rail contact force and governing equations,a surface crack problem in a semi-infinite space was reduced to solving a set of hyper-singular integral equations with displacement jumps as unknown functions.
为简化轮轨接触力和控制方程的计算,利用Hadamard有限部积分的概念,将半空间表面裂纹问题归化为求解一组以位移间断作为未知函数的超奇异积分方程;采用边界元法离散该积分方程组,并对方程组中出现的超奇异积分提出了特殊的数值处理方法。
2.
A radial crack in an elastic plane with a circular inclusion is investigated by use of a hyper-singular integral equation method.
根据含圆形嵌体平面问题在极坐标下的弹性力学基本解,使用Betti互换定理,在有限部积分意义下将问题归结为两个以裂纹岸位移间断为基本未知量、对于Ⅰ型和Ⅱ型问题相互独立的超奇异积分方程,对含圆形嵌体弹性平面中的径向裂纹问题进行了研究。
3.
Based on the fundamental solution of the elastic mechanics on the half-plane body with free boundary,and using Bitt s low, the stress-displacement relation, Hooke s low, and the stress boundary condition of the crack, the hyper-singular integral equations to describe this problem was \{derived\}; through suitable integral transforms, we established the correspondi.
对固定边半平面含平行于边界裂纹的问题进行研究,由固定边半平面弹性体的弹性力学基本解,利用换功定律、位移-应变关系、胡克定律及裂纹岸应力边界条件,得到描述该问题的超奇异积分方程组,并通过适当的积分变换,在有限部积分的意义下建立了相应的数值方法。
4) hypersingular integral equations
超奇异积分方程
1.
Then,this crack problem is reduced to solving a set of hypersingular integral equations coupled with boundary integral equations.
应用位移基本解,磁电热弹材料三维裂纹问题被转化为求解一组以裂纹表面位移间断为未知函数的超奇异积分方程问题。
2.
Using Kelvin s solutions and the concepts of finite-part integral,a set of hypersingular integral equations to solve the inclusion problems in two dimension elasticity is derived,and its numerical method is then proposed by combining the finite-part integral method with the boundary element method.
利用Kelvin解及有限部积分的概念和方法,导出求解含夹杂二维有限弹性体的超奇异积分方程,继而使用有限部积分与边界元结合的方法,为其建立了数值求解方法,即有限部积分与边界元法。
3.
Using the concepts and method of finite-part integrals, the hypersingular integral equations of a plane crack loaded by arbitrary loads is proved exactly.
本文利用有限部积分的概念和方法,严格地证明了三维弹性体中受任意载荷作用的平片裂纹问题的超奇异积分方程组,并对未知解的性态作了理论分析,得到了性态指数,在此基础上通过主部分析,精确地求得了裂纹前沿光滑点附近的奇性应力场,从而找到了以裂纹面位移间断(位错)表示的应力强度因子表达式,最后对所得的超奇异积分方程组建立了数值法,并用此计算了若干典型的平片裂纹问题,数值结果令人满意。
5) singular integro-differential equation
奇异积分-微分方程
1.
A class of singular integro-differential equations with ξ kernel under some analytic conditions is discussed.
研究了一类含ζ核的奇异积分-微分方程。
6) singular integro-differential equations
奇异积分微分方程
补充资料:积分微分方程
积分微分方程
integro-differential equation
积分微分方程【加峡卿~由压翻即位叭闰.柱阅;舰.印。-皿.例卜peH姗~oe邓aBHe皿。e」 在微分和积分两种运算符号下都包含未知函数的一个方程.积分方程和微分方程也是积分微分方程. 线性积分微分方程(U几浓r intef卿~d正rerelltial eqUa-tion).设了是给定的一个变量的函数,令 , L·[Ul三答、;‘(‘)U(‘,(x),M夕【Ul二,瓦q,(x)U‘”(y)是带有[a,b1上充分光滑的系数p万和q,的微分表达式,且设K是正方形汇a,blx【“,b]上充分光滑的一个已知函数.形如 b L、。U〕一“丁K(x,,)M,。U ld,+,(x)(,)的一个方程称为线性积分微分方程;又是一个参数.如果(1)中当夕>x函数K(x,夕)二0,则(1)称为带可变积分限的积分微分方程;它可以写成 ::[。]一、丁、(x,,)、,。。]以,+f(x)(2) 0的形式.对(I)和(2)可以提Ca川ly问题(Cauchyproblem)(求满足U(’)(戊)=e‘(i二o,l,…,l一1)的解,这里。*是给定的数,l是L:【U」的阶数,且:盯a,b』),以及各种边值问题(例如,周期解问题).很多情况下(见[3],[4]),对(1)和(2)的间题能够简化,或者甚至可分别地化成第二类Fredholm积分方程(见Fr司比bn方程(Fredhohn叫Uation))或翎t~方程(VOherra eqUa幻o幻).同时,对积分微分方程很多特殊现象产生了,而这些现象对微分或积分方程是不典型的. 最简单的非线性积分微分方程(non一址℃肚访把孚。-dit免rential闪Uation)有形式 打U(x)一、JF(x,,,U(,),…,U‘“,(,,)d,+f(x)·压缩映射原理(conti刁ctingrr以Pp吨pnnciPle),Sd.u-der法(Schauder nr山闭),以及其他的非线性泛函分析方法,用于研究这种方程. 对积分微分方程,也可以研究解的稳定性,本征函数展开,按小参数的渐近展开等问题.偏积分微分方程和带重积分的积分微分方程在实践中经常遇到.BOltZ盯讯nn方程和KO力MoropoB一凡Uer方程是其中的例子.‘什江J吊锐”诚”万程是有慈义的,例如在人口动力学中(fAZ」).偏积分微分方程,即作为积分和偏微分算子两者的自变量出现的多元函数的方程是有价值的,譬如在连续统力学中(【Al],!A3」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条