1) generalized flutter derivative
广义颤振导数
1.
The concept of "generalized flutter derivative"is proposed,and its physical meaning is illustrated.
从振幅和风速2种角度解释了桥梁自激气动力非线性的起因;提出了"广义颤振导数"概念,对其物理意义进行了解释;绘制了平板和苏通大桥主梁节段模型的广义颤振导数曲线,对比分析了各种广义颤振导数的特点,验证了广义颤振导数的优点。
2) flutter derivatives
颤振导数
1.
Identification of flutter derivatives of full-bridge aeroelastic model;
全桥气弹模型颤振导数识别
2.
Simulations for identification of flutter derivatives of bridge section using the coupled-forced-vibration method;
桥梁颤振导数的耦合强迫振动仿真识别
3.
The identification of flutter derivatives for 2-DOF and 3-DOF bridge sectional model applying the forced vibration method;
两自由度及三自由度桥梁断面颤振导数的强迫振动识别法
3) flutter derivative
颤振导数
1.
Based on static dynamic force test of segmental models of Chongqing Chaotianmen Bridge,dynamic force test,the varying law of the coefficients of three-dimensional static component forces with the changing of attack angles and properties of main girder and main arch,and flutter property of main girder are obtained,and eight flutter derivatives of main girder are recognized.
通过重庆朝天门长江大桥的节段模型静力试验和动力试验,获得了主梁及主拱的静力三分力系数随攻角的变化规律、主梁的颤振特性,识别了主梁的8个颤振导数,并对试验获得的结果进行了详细分析;对该桥的主梁和主拱结构的抗风性能进行了评价。
2.
It is found that the flutter derivatives are dependent from the amplitude and frequency in the practical range of wind speed.
利用我们开发的国内第一个强迫振动法试验方法 ,研究了三种不同断面的桥梁颤振自激力特性和Scanlan提出的颤振导数理论的若干假定。
3.
Model stiffness and support location effect on flutter derivatives is studied in bridge deck section dynamical test.
通过试验研究了桥梁节段模型动力试验中模型本身的刚度和支撑位置对颤振导数测量结果的影响 。
4) flutter derivatives
颤振导数识别
1.
Testing study of determination of flutter derivatives by taut strip model in smooth flow;
均匀流场拉条模型颤振导数识别试验研究
5) generalized derivative
广义导数
1.
This paper extends the derivatives of binary sequences of reference [1] in two different ways and defines two different generalized derivatives of binary sequences.
以两种不同的方式对文献[1]中的二元序列的导数进行了推广,定义了两类不同的二元序列的广义导数,并且进一步讨论了周期为2N和2N-1的二元序列的广义导数的性质,推广了文献[1]的结果。
2.
In this paper, we gave the generalized derivative definition of mapping at infinitely space and took the derivative intead of the Frechet derivative of smooth mapping.
本文对无穷维空间的映象给出了广义导数的概念 ,利用这种导数替代光滑映象的Frechet导数 ,给出了无穷维空间非光滑算子方程的阻尼牛顿法收敛域的一个定理 。
3.
Then the periodicity of the generalized derivatives of periodic binary sequences is studied and some properties of the generalized derivatives are provided.
给出了序列周期的另一类定义,研究了周期二元序列的广义导数序列的周期性,得到了周期二元序列的广义导数序列的一些性质,并进一步探讨了周期分别为2N和2N-1的二元序列的广义导数。
补充资料:Соболев广义导数
Соболев广义导数
Sobolev generalized derivative
【补注】在西方文献中,O众泪玲B广义导数称为弱导数(,祀ak deri珑币ve)或分布导数(dis川h川0刊目山幻W币记).。6o二。广义导数【S诵川eVg留司加团山滋.d视;Co-60二皿0606川e一。朋”Po“3即及”a“」 局部可积函数的局部可积‘广义导数(见广义函数(罗ne阁讼沮丘mctlon)). 确切地说,假设Q是n维空间R”的开集,F和.厂都是Q上局部可积函数,那么f是F在Q上羊于x,的。分叨e”广冬停导攀记为 斋(·,一f‘·,,·〔“,,一’,‘’,”,是指对O上所有具紧支集的无限次可微函数价,等式 fF(二)李竺d二=一ff(二、耐,、d二 J OX,夕- 日-一]O成立.C改沁朋B广义导数在O上仅对几乎处处的戈有定义. 一个等价的定义如下.假设Q上局部可积函数F能在某个陀维零测度集上改变它的值成为这样一个函数,使后者对几乎所有(依”一1维测度)的点(x,,·,x,一;,毛十,,“‘,x。)关于x,是一元局部绝对连续的于是F对几乎所有的x〔。,存在关于xj的通常偏导数.如果后者局部可积,则称它为O石如cB广义导数. 第三种等价的定义是:给定两个函数F与f,若在。上存在连续可微函数列遥凡},使对其闭包含于Q的任意区域田都有 J!r*(x)一F(x)‘dx一0, rl刁F‘(x飞_、} )}二成一一了“’}“x一“,“一的,则f就是F在Q上的O力期eB广义导数. F在Q上的高阶广义导数(若存在) a 2 F a3F 口x。ax,’ax.口x,刁x。’可由归纳法定义.它们与微分的次序无关;例如在Q上几乎处处有 J ZF_刁ZF 日x.刁x,日x,己x,’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条