说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 颤振参数
1)  flutter parameters
颤振参数
1.
Based on the flutter theory of flat plate,a new optimization model that involving twin undetermined flutter parameters is proposed.
经算例验证 ,上述 3种方法计算简便 ,精度高 ,为平板颤振频率、颤振风速和折算风速等颤振参数的确定提供了新的有效途径 。
2)  flight flutter modal parameters identification
飞机颤振模态参数识别
3)  flutter derivatives
颤振导数
1.
Identification of flutter derivatives of full-bridge aeroelastic model;
全桥气弹模型颤振导数识别
2.
Simulations for identification of flutter derivatives of bridge section using the coupled-forced-vibration method;
桥梁颤振导数的耦合强迫振动仿真识别
3.
The identification of flutter derivatives for 2-DOF and 3-DOF bridge sectional model applying the forced vibration method;
两自由度及三自由度桥梁断面颤振导数的强迫振动识别法
4)  flutter derivative
颤振导数
1.
Based on static dynamic force test of segmental models of Chongqing Chaotianmen Bridge,dynamic force test,the varying law of the coefficients of three-dimensional static component forces with the changing of attack angles and properties of main girder and main arch,and flutter property of main girder are obtained,and eight flutter derivatives of main girder are recognized.
通过重庆朝天门长江大桥的节段模型静力试验和动力试验,获得了主梁及主拱的静力三分力系数随攻角的变化规律、主梁的颤振特性,识别了主梁的8个颤振导数,并对试验获得的结果进行了详细分析;对该桥的主梁和主拱结构的抗风性能进行了评价。
2.
It is found that the flutter derivatives are dependent from the amplitude and frequency in the practical range of wind speed.
利用我们开发的国内第一个强迫振动法试验方法 ,研究了三种不同断面的桥梁颤振自激力特性和Scanlan提出的颤振导数理论的若干假定。
3.
Model stiffness and support location effect on flutter derivatives is studied in bridge deck section dynamical test.
通过试验研究了桥梁节段模型动力试验中模型本身的刚度和支撑位置对颤振导数测量结果的影响 。
5)  flutter derivatives
颤振导数识别
1.
Testing study of determination of flutter derivatives by taut strip model in smooth flow;
均匀流场拉条模型颤振导数识别试验研究
6)  generalized flutter derivative
广义颤振导数
1.
The concept of "generalized flutter derivative"is proposed,and its physical meaning is illustrated.
从振幅和风速2种角度解释了桥梁自激气动力非线性的起因;提出了"广义颤振导数"概念,对其物理意义进行了解释;绘制了平板和苏通大桥主梁节段模型的广义颤振导数曲线,对比分析了各种广义颤振导数的特点,验证了广义颤振导数的优点。
补充资料:颤振
颤振
flutter

   弹性结构在均匀气(或液)流中受到空气(或液体)动力、弹性力和惯性力的耦合作用而发生的大幅度振动。它可使飞行器结构破坏,建筑物和桥梁倒塌。发生颤振的必要条件是:结构上的瞬时流体动力与弹性位移之间有相位差,因而使振动的结构有可能从气(或液)流中吸取能量而扩大振幅。最常见的颤振发生在机翼上。当机翼受扰动向上偏离平衡位置后,弹性恢复力使它向下方平衡位置运动,同时产生作用于机翼重心的向上惯性力,因机翼重心在扭心之后,惯性力产生对扭心的力矩而使机翼迎角减小,引起向下的附加气动力,加快机翼向下运动;当机翼运动到下方极限位置而返回向上运动后,出现相反的情况。整个过程中,空气动力是激振力,与飞行速度的二次方成正比;同时还有空气对机翼的阻尼力,与飞行速度成正比。低速时,阻尼力占优势,扰动后的振动逐渐消失,平衡位置是稳定的。当飞行速度超过颤振临界速度后,激振力占优势,平衡位置失稳,产生大幅度振动,导致机翼在很短时间内破坏。防止机翼颤振的最有效方法是使机翼重心前移以减小惯性力矩。设计飞机时,要在风洞中进行模型试验以确定颤振临界速度。飞机研制成功后,还需进行飞行颤振试验。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条