说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 可完备化幂零李代数
1)  completable nilpotent Lie algebra
可完备化幂零李代数
1.
It is proved that this class of nilpotent Lie algebras is a completable nilpotent Lie algebra.
具体确定了一类中心为二维的三步幂零李代数的导子代数,得到了导子代数的一些性质,并证明了这类幂零李代数是可完备化幂零李代数
2)  nilpotent Lie algebra
幂零李代数
1.
With the concept of p r -Lie algebra,we explor the isomorphic classes of irreducible module of a nilpotent Lie algebra.
给出了pr-李代数的定义,证明了pr-李代数具有许多与限制李代数类似的性质,然后利用pr-李代数概念,讨论了一般幂零李代数不可约表示的同构类,得到了特征标为S的不可约表示同构类的个数,以及某些阶化李代数的阶化模的一些结
2.
In this paper we explicitly determine the derivation algebras of a class of 3-step nilpotent Lie algebras,and obtain some properties of the derivation algebras.
具体确定了一类中心为二维的三步幂零李代数的导子代数,得到了导子代数的一些性质,并证明了这类幂零李代数是可完备化幂零李代数
3.
A new class of nilpotent Lie algebras, called completeble nilpotent Lie algebras, arises from the study of complete Lie algebra.
完备李代数的讨论导致了一类新的幂零李代数,称为可完备化幂零李代数
3)  Cartan nilpotent Lie algebra
Crtan幂零李代数
4)  p-Filiform nilpotent Lie algebra
p-Filiform幂零李代数
5)  2-step nilpotent Lie algebra
二步幂零李代数
6)  l form nilpotent Lie algebra
型l幂零李代数
补充资料:幂零Lie代数


幂零Lie代数
Lie algebra, nilpotent

幂零lie代数【liealgebI’a.浦训t即t;瓜朋~。代Hm明盯e6Pal 域k上满足下列等价条件之一的代数(司罗bla)g: l)有g的理想的有限降链{9.}。“、。,使得g。=g,g。={o},且对o簇i1,则其换位子理想的余维数codim【g,g」》2.特别地,如果dinlg簇2,则g是交换的.唯一的非交换的三维幂零Lie代数g同构于n(3k).对于几个小维数(当k=C,对于dinig续7)幂零Lie代数已经开列出来,但仍然没有它们分类的一般途径(1989). 幂零Lie代数(早期,它们被称为特殊Lie代数(51不戈诫Liea】罗b几璐)或O阶Lie代数)在5 .Lie关于微分方程积分方法研究的第一阶段就已经遇到了.可解lie代数(L记al罗bra,501铂b】e)的分类在一定意义下归结为枚举幂零Lie代数.在任意有限维Lie代数中都有一个最大的幂零理想(【21的术语,诣零根(成mdical)).另一个幂零理想也被考虑了—不可约的有限维表示的核的交集(幂零根,亦见lie代数的表示(rePn乏ellta-tion of a Lie algebm))(见【11,【4」).如果r是代数g的根,则幂零根n与 汇g,:]=[g,g]自r重合.商代数g/n是约化的(见约化块代数(玩司罗-腼,阁ucti祀)),并且n是有此性质的最小的理想.如果chark=O,则诣零根由所有使得adx幂零的x〔T组成. 研究C上约化Lie代数g,自然提出幂零子代数,它们是抛物子代数(parabelic su加】罗bra)的幂零根.当g=gI(V)时,这些幂零子代数与上面考虑过的子代数n(F)重合.9的一个Borel子代数(见Borel子群(Borel subgrouP))是g的一个由幂零元组成的极大子代数,不计共扼意义下是唯一的.更广的一类幂零L记代数由g的抛物子代数的由幂零元素组成的任意理想形成.当g=叭(V)时,这些幂零Lie代数已在【6]中被分类〔标准诣零代数〔standa记nila」geb闭)),而一般情形下在【7」中. 一个幂零Lie代数的中心必是非平凡的,而任意一个幂零Lje代数均可由幂零代数的中心扩张列得到.幂零Lie代数类关于子代数、商代数、中心扩张、有限直和是封闭的.特别地,n(n,k)的任意子代数是幂零的.反之,任意一个有限维幂零Lie代数必然同构于n(m,k)的一个子代数,对某个m(如果chark=0);这是八d。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条