1) homogeneous strongly pseudoconvex domains
齐次强拟凸域
1.
This paper uses the characteristic spaces theory of polynomials to study the classification of homogeneous principal Hardy submodules over homogeneous strongly pseudoconvex domains.
利用多项式的特征空间理论,研究了齐次强拟凸域上的齐次主Hardy子模的分类,得到了以下主要结果:在一个具有光滑边界的齐次强拟凸域上,两个齐次主Hardy子模相似当且仅当相应的齐次多项式只相差一个常数因子。
2) strictly pseudoconvex domain
强拟凸域
1.
We obtain a continuous solution of -equation for a strictly pseudoconvex domain with non-smooth boundary on Stein manifolds,which doesn t involve integral on boundary.
利用Hermitian度量和陈联络,构造拓广的不变积分核,借助Stokes公式,探究Stein流形中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式及其-方程的连续解,其特点是不含边界积分,从而避免了边界积分的复杂估计,另外该拓广式的特点是含有可供选择的实参数m,m=2,3,…,P(P<+∞),适用范围更加广泛。
2.
By meams of ΓK manifolds introduced by Laurent-Thiebaut,et al,we constructed extend B-M(Bochner-Matinelli) kernel to study extension formula of Koppelman-Leray-Norguet formula and obtained a continuous solutions of -equation on a strictly pseudoconvex domain with non-smooth boundary in Cn space.
利用Laurent-Thiebaut等引进的ΓK流形,构造拓广的B-M(Bochner-Matinelli)新核,探究Cn空间中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式和-方程的连续解。
3.
In [1],an extensional formula of Leray-Norguet with weight factors of differential forms and weighted continuous solutions of the -equation on a strictly pseudoconvex domain with piecewise C(1) smooth boundaries in C n were obtained.
文[1]得到Cn空间中具有逐块C(1)光滑边界的强拟凸域上(0,q)形式的带权因子的Leray-Norguet公式的拓广式及-方程带权因子的连续解。
3) Bounded strongly pseudoconvex domain
有界强拟凸域
1.
Let Ω be a bounded strongly pseudoconvex domain in C n In this paper we get characterizations of carleson measure and varnishing carleson measure, using carleson measure,We also get characterizations of Bloch and little Bloch.
在文中 ,对于 Cn中有界强拟凸域 。
4) strict pseudoconvex polyhedron
强拟凸多面体域
1.
Sets as its aim to obtain an integral representation of the holomorphic functions on the analytic subvariety of strict pseudoconvex polyhedron in space C n.
通过在Cn空间中强拟凸多面体域的复补维数为m(1≤m<n)的子流形上构造积分核,得到该复子流上的全纯函数的积分表示公式。
5) d-quasihomogeneous
d-拟齐次
6) homogeneous convex function
齐次凸函数
补充资料:凸域
凸域
convex domain
凸域t“目Vex水口越n;.ully翻”OO月acT列 具有内点的凸集(田nvex set)·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条