1) uniform quasiconvcx domain
一致拟凸域
2) quasi-uniformly convexity
拟一致凸
1.
Moreover,for the space X satisfying a condition (Q),each bounded set in C 0(X) admits a center if X is quasi-uniformly convexity.
证明了C0 (X)中的每个紧子集均有中心充要条件是X中每个紧子集均有中心 ,而且 ,若X满足条件 (Q) ,则C0 (X)中的每个有界集有中心充要条件是X是拟一致凸的 。
3) uniformly strict quasiconvexity
一致严格拟凸
4) uniformly (k-1)-convex domain
一致(k-1)凸区域
5) uniformly convex
一致凸
1.
Convergence theorems of Ishikawa iteration for nonexpansive mapping in a uniformly convex Banach space;
一致凸Banach空间中非扩张映象的Ishikawa迭代收敛定理
2.
The existence and Uni queness theorems of common coupled fixed point and coincidence points for a sequence of binary contraction mappings,canceled all continuous assumptions in uniformly convex Banach space.
在一致凸 Banach 空间中,获得了二元非线性压缩映象对和映象列的公共耦合不动点的存在与唯一性定理,并对已有的结果进行了推广。
3.
It reaches the conclusion that the continuous multi_valued asymptotically nonexpansive on the nonempty closed convex and bounded subset of a uniformly convex Banach space has a fixed point.
本文借助于渐近中点、渐近半径的概念,得到一致凸Banach空间中非空有界闭凸子集上的连续集值渐近非扩张映射有不动点。
6) UR point
一致凸点
补充资料:凸域
凸域
convex domain
凸域t“目Vex水口越n;.ully翻”OO月acT列 具有内点的凸集(田nvex set)·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条