说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟凸区域
1)  quasiconvex domain
拟凸区域
2)  strictly pseudoconvex domain
强拟凸域
1.
We obtain a continuous solution of -equation for a strictly pseudoconvex domain with non-smooth boundary on Stein manifolds,which doesn t involve integral on boundary.
利用Hermitian度量和陈联络,构造拓广的不变积分核,借助Stokes公式,探究Stein流形中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式及其-方程的连续解,其特点是不含边界积分,从而避免了边界积分的复杂估计,另外该拓广式的特点是含有可供选择的实参数m,m=2,3,…,P(P<+∞),适用范围更加广泛。
2.
By meams of ΓK manifolds introduced by Laurent-Thiebaut,et al,we constructed extend B-M(Bochner-Matinelli) kernel to study extension formula of Koppelman-Leray-Norguet formula and obtained a continuous solutions of -equation on a strictly pseudoconvex domain with non-smooth boundary in Cn space.
利用Laurent-Thiebaut等引进的ΓK流形,构造拓广的B-M(Bochner-Matinelli)新核,探究Cn空间中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式和-方程的连续解。
3.
In [1],an extensional formula of Leray-Norguet with weight factors of differential forms and weighted continuous solutions of the -equation on a strictly pseudoconvex domain with piecewise C(1) smooth boundaries in C n were obtained.
文[1]得到Cn空间中具有逐块C(1)光滑边界的强拟凸域上(0,q)形式的带权因子的Leray-Norguet公式的拓广式及-方程带权因子的连续解。
3)  α-quasicovex domains
α-拟凸域
4)  weakly quasiconvex domain
弱拟凸域
5)  pseudoconvex domain
拟凸域
1.
A note of holomorphic automrphism group on a class of bounded pseudoconvex domains;
关于一类有界拟凸域全纯自同构群的一个注记
2.
In this article we study the analyticity dependence on the parameter of solutions to the  equation on pseudoconvex domains.
本文作者研究拟凸域上的 -方程解关于参数的解析依赖性 。
3.
The holomorphic sectional curvatures under invariant Khler metrics on a class of pseudoconvex domains E(m,n,K) are given in the explicit forms.
本文对一类拟凸域E(m,n,K)给出其不变Khler度量下的全纯截曲率的显表达式。
6)  convex domain
凸区域
1.
Any convex domain could be approached by convex polygon,for temperature distribution within convex domain,it could be approximated by irrational function interpolation.
对于任意的凸区域采用一个凸多边形进行逼近,利用无理函数插值对凸域上的温度分布问题进行插值近似。
2.
Let D be a convex domain in the place.
设D为平面内一凸区域,本文根据D的面积与D的半周长与直径之和之间的关系,讨论凸区域D内 所包含的格点的个数。
3.
The boundary behaviour on a convex domain in C n and a Stein manifold is studied.
研究Cn 空间和Stein 流形上凸区域的边界性质。
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条