1) balanced pseudoconvex domains
平衡拟凸域
1.
Let Ω be a bounded balanced pseudoconvex domains.
设Ω是Cn 中具有C2 定义函数的有界平衡拟凸域 ,在Ω上引进一个双全纯映照子族———具有参数表示的映照族 ,研究其一些性质 :包括增长定理、掩盖定理 ,得到其与星形映照同型的增长定理及掩盖定理 。
2) the bounded balanced pseudo-convex domains
有界平衡拟凸域
1.
A new method is given Separately on the unit ball B~n and the bounded balanced pseudo-convex domainsΩusing the para
即给出了C~n中单位球B~n和有界平衡拟凸域Ω上星形映照的构造。
3) Convex balanced domain
凸平衡域
4) strictly pseudoconvex domain
强拟凸域
1.
We obtain a continuous solution of -equation for a strictly pseudoconvex domain with non-smooth boundary on Stein manifolds,which doesn t involve integral on boundary.
利用Hermitian度量和陈联络,构造拓广的不变积分核,借助Stokes公式,探究Stein流形中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式及其-方程的连续解,其特点是不含边界积分,从而避免了边界积分的复杂估计,另外该拓广式的特点是含有可供选择的实参数m,m=2,3,…,P(P<+∞),适用范围更加广泛。
2.
By meams of ΓK manifolds introduced by Laurent-Thiebaut,et al,we constructed extend B-M(Bochner-Matinelli) kernel to study extension formula of Koppelman-Leray-Norguet formula and obtained a continuous solutions of -equation on a strictly pseudoconvex domain with non-smooth boundary in Cn space.
利用Laurent-Thiebaut等引进的ΓK流形,构造拓广的B-M(Bochner-Matinelli)新核,探究Cn空间中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式和-方程的连续解。
3.
In [1],an extensional formula of Leray-Norguet with weight factors of differential forms and weighted continuous solutions of the -equation on a strictly pseudoconvex domain with piecewise C(1) smooth boundaries in C n were obtained.
文[1]得到Cn空间中具有逐块C(1)光滑边界的强拟凸域上(0,q)形式的带权因子的Leray-Norguet公式的拓广式及-方程带权因子的连续解。
5) α-quasicovex domains
α-拟凸域
6) weakly quasiconvex domain
弱拟凸域
补充资料:凸域
凸域
convex domain
凸域t“目Vex水口越n;.ully翻”OO月acT列 具有内点的凸集(田nvex set)·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条