1) Singular symplectic space
奇异辛空间
2) affine singular symplectic space
仿射奇异辛空间
1.
In this paper,the concepts of affine singular symplectic spaces ASG(2v + l, IFq)and singular symplectic group ASp2v+l,v(IFq)over IFq are given,and some Anzahl theorems in ASG(2v + l, IFq)are obtained using actions of ASP2V+l,v(IFq)on ASG(2v+l, IFq), Moreover,we construct an associative scheme and an authentication code in view of singular affine symplectic spaces.
给出了有限域IFq上的2v+l维仿射奇异辛空间ASG(2v+l,IFq)和2v+l次仿射奇异辛群ASP2v+l,v(IFq)的概念,然后讨论了ASP2v+l,v(IFq)作用在ASG(2v+l,IFq)上的可迁性及一些相关的计数定理,最后给出应用仿射奇异辛空问构作结合方案和认证码的例子。
3) Singular pseudosymplectic space
奇异伪辛空间
4) spatial singularity
空间奇异性
1.
The spectrums of the ultrashort pulsed unchirped and chirped cosine-Gaussian beams are given,which draws a conclusion that the broad spectrum width is the original reason for the spatial singularity.
结果表明不同脉冲宽度的无啁啾余弦高斯脉冲光束的频谱以及相同脉冲宽度下啁啾余弦高斯脉冲光束的频谱有着很大不同,直观地看出了脉冲宽度和啁啾对超短余弦高斯脉冲光束频谱宽度的影响,说明了频谱宽度对超短余弦高斯脉冲光束空间奇异性有很大的影响。
2.
The paper discusses the spatial singularity of the ultrashort pulsed beams in theory by use of the simulation.
利用理论推导和数值模拟的方法对超短脉冲光束的空间奇异性问题进行了较为深入的研究,给出了超短脉冲光束是否需要使用复解析信号理论的条件,并通过对超短高斯脉冲光束的频谱分析,直观形象地看到了空间奇异性产生的根源,还对比了超短无啁啾和啁啾高斯脉冲光束的频谱差异,说明了超短脉冲光束的空间奇异性主要是由频谱宽度引起的。
5) singular unitary space
奇异酉空间
6) singular subspace
奇异子空间
1.
We present a relative perturbation bound of singular subspaces for the Wedin\'s sin θ type bound.
给出了奇异子空间Wledin sin θ型定理的一个相对扰动界;另外,通过使用不同的相对分离度给出左、右奇异子空间各自的扰动界,改进了以往相应的结果。
补充资料:辛空间
辛空间
symplectic space
【补注】尸2。+,中辛几何的记号SpZ。+l不是惯常的记号.用SpZ。(k)表示具有交错(即斜对称)双线性型的线性空间k’”中的辛群.尸2。*,(k)中相应的射影群记成PSpZ。(k);它就是上面正文中所说的群,称为射影辛群(projectives丫mP犯cticgouP). 具有零配极的射影空间中的极子空间,也称作迷向子空间(isotropic subsPace),构成所谓极几何(加lar罗。此try)的例子(亦见极空I’N(pOlar space);可见【All).在Tits的厦(b泌dings)理论中,解释为极几何的辛空间是型C。的厦(见【A2」及舫ts厦(Titsb山lding)).辛空间【sylnpleeties声ce;c”Mn月eKT“,eeKoe npoeT.Pa“cTB01 域k上奇维数的射影空间尸2。十,,赋予了零配极的对合关系;用SpZ。十、表示它. 令chark护2 .SpZ。十:中绝对的零配极总能写成形式。一“:,、j,其中{}a,,}{是斜对称矩阵(“ij二一aj)·用向量形式,绝对零配极可写成。=Ax,这里A是斜对称算子,在适当基下,它的矩阵化成 1}0 1 11 }1一10!{ {}A}}=}I’二}l l)0 11} l{一,“{{这时,绝对零配极取典范形式 uZ=x 2.+1,“21+l二一戈2苦.绝对零配极诱导了一个双线性型,写成典范形式如下: xAy一艺(二’‘y”+’一二’1+’夕’,).SpZ。十之的与其零配极交换的直射变换称为辛变换(s”11-plectic transfo~tion);确定这些直射变换的算子称为辛(synlplectic)算子.}川}的上述典范形式确定了辛算子U的2”十2阶方阵,其元素满足条件 军(U了‘U:“’一U了’‘’U:‘)一”,.*一”,一其中占。,。是Krollecker符号.这样的矩阵称为辛矩阵;其行列式等于1.辛变换构成群,它是一个Lie群. 空间SpZ。*;的每个点位于它相对于绝对零配极的极超平面上.也能定义SpZ。、:的极子空间.SpZ。、l的自极n空间的流形称为它的绝对线性复形(absolutehaear comPlex).在这背景下,辛群也称(线性的(h-near))复形群(comPleX group). 每对直线以及它们在零配极下的极(Zn一1)空间在S仇。+,中确定了对于该空间的辛变换群的唯一辛不变量.过每条线的任何点都有该线和(Zn一l)空间的横截通过,这就确定了点的射影四元组.这是辛不变量(s卯叩kctic invariani)的几何解释,它断定了点的这些四元组的交叉比的等式. 辛3维空间可在双曲空间中解释,这给出了辛空间和双曲空间的联系.例如Sp3的辛变换群同构于双曲空间’54的运动群.按这种解释,辛不变量相应于双曲空间中点之间的距离.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条