说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 奇异伪辛群
1)  Singular Pseudo-symplectic Groups
奇异伪辛群
2)  singular symplectic group
奇异辛群
1.
Lattices generated by joins of the subspaces in orbits under finite singular symplectic groups(Ⅰ)
有限奇异辛群作用下轨道中子空间的和生成的格(Ⅰ)(英文)
3)  singular pseudo-symplectic geoetry
奇异伪辛几何
4)  Singular pseudosymplectic space
奇异伪辛空间
5)  affine singular symplectic group
仿射奇异辛群
6)  pseudo-symplectic group
伪辛群
1.
The problem of generate of pseudo-symplectic group in the loca ring is discussed with pseudo-symplectic geometry embedding in the local ring.
将伪辛群植于局部环上,讨论了局部环上的伪辛群的生成问题,给出了生成元的长度。
2.
In this paper,under the actions of the pseudo-symplectic group P_(s2v+δ)(F_q)over afinite field of characteristic two,we study the suborbits of the transitive set of m-dimensionaltotally isotropic subgroups, and calculate the number of non-trival orbits and the length of eachsuborbit.
本文讨论特征为2的有限域上伪辛几何中,在伪辛群P_(s2v+δ)(F_q)作用下m维全迷向子空间可迁集的次轨道。
补充资料:伪群


伪群
pseudo - group

换的伪群和变换群一样,在M上决定了一个等价关系;等价类就称为其轨道.流形M的变换之伪群r称为传递的(hansitive)如果M即其仅有的轨道.若M没有非平凡的r不变的叶状结构,则r称为本原的(prilnjti代)(否则,此伪群称为非本原的(叨p山加~ti记))、 微分流形的变换的一个伪群r称为由一个偏微分方程组s所定义的变换的比伪群(Lie伴:udo一g心uPoftrd佰forr浅币ons),如果r恰好是由那些满足方程组S的M的局部变换组成的.例如平面的共形变换的伪群就是由Q玻场一Ri已比叼旧n方程组(见Ca曲y一RI图.n.条件(C灿佣hy一凡en以nn co劝由由ns))所决定的变换的Lie伪群.变换的Lie伪群的阶,就是定义它的微分方程组之最低阶. 变换的L记伪群之例.a)”维复空间C,之一切全纯局部变换所成的伪群. b)所有具有常值血翻肠行列式(」改。恤n)的C”之全纯局部变换的伪群. c)所有拍 cobi行列式为1的C”之全纯局部变换之伪群. d)C”(n为偶)的保持微分2形式 田=d尸八d矛+d扩八d犷十…十d扩一’八d扩不变的一切全纯局部变换的H改nilton伪群(H故回ton衅泪。一gIOuP). e)C“中一切保持田到相差一个常数因子的全纯局部变换的伪群. f)C”(n二2。+l,川)l)中一切保持微分1形式 d:·十艺(:‘d:·+‘一:。十!d:·) 宕.1到相差一个因子(可以是函数)的全纯局部变换所成的切触伪群(con切ctp蛤udD一gro叩). g)例a)一f)中的复变换伪群的实的类比. 例a),c)一f)中的比伪群之阶均为1,而例b)之阶为2. 流形M的任意变换L记群G通过其在M之开子集上的变换限制决定一个变换伪群r(G).形如r(G)的变换伪群称为可整体化的(globali劝比).例如球面S”上的局部共形变换的伪群当n>2时是可整体化的,而当n=2时则不能整体化. 变换的比伪群称为是有限型(几苗记tyl姆)的,如果存在一个自然数d,使得每一个局部变换Per均由它在某点x‘刀,上的d节唯一决定;这种d中的最小者称为r的攀举(由g民)或掣〔type)‘如果这样的d不存在,r就称为无限型的变换伪群(衅比加-gro叩oftr出芍form atio璐of 111石11ite type).例a)一f)中的伪群都是无限型的本原的变换Lie伪群. 令r是n维流形M上的一传递的变换L记伪群,Gr(r)是r中一切保持一点O任M不变的局部变换之r节的族,这种变换即这样的p〔r,使得0任D,而且爪O)=0.对集合Gr(r)赋予比群的自然结构后就称为r的r阶迷向群(r一tho川er isotl习pygrouP).(Gj(r)也称为r的线性迷向群(场lear150枉opygro叩)·Gr(r)的赚代数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条