1) multivalued Lebesgue-Stieltjes integral
集值Lebesgue-Stieltjes积分
4) Riemann-Lebesgue-Stieltjes integral
Riemann-Lebesgue-Stieltjes积分
5) set-valued Riemann-Stieltjes integral
集值Riemann-Stieltjes积分
1.
In this paper, we establish the set-valued Riemann-Stieltjes integral of a real valued non-negative function with respect to set-valued order increasing function.
本文首先建立了实值非负函数关于集值序增函数的集值Riemann-Stieltjes积分,并讨论了集值Riemann-Stieltjes积分的性质,给出了集值Riemann-Stieltjes可积的充要条件,最后引入了集值Riemann-Stieltjes随机积分。
2.
Established in this paper is the set-valued Riemann-Stieltjes integral of a set-valued function with respect to a real valued non-decreasing function.
本文首先建立了集值函数关于实值单调非减函数的集值Riemann-Stieltjes积分,然后讨论了集值Riemann-Stieltjes积分的性质,给出了集值Riemann-Stieltjes可积的充要条件,最后引入集值Riemann-Stieltjes随机积分。
6) Choquet Integral Defined by Lebesgue-Stieltjes Integral
Lebesgue-Stieltjes形式的Choquet积分
1.
Choquet Integral Defined by Lebesgue-Stieltjes Integral;
Lebesgue-Stieltjes形式的Choquet积分
2.
Choquet Integral Defined by Lebesgue-Stieltjes Integral Ⅱ
Lebesgue-Stieltjes形式的Choquet积分Ⅱ
3.
This paper researches a new integral, that is, Choquet integral defined by Lebesgue-Stieltjes integral, and sevaral important structual properties of monotone set-valued function defined by set-valued integral about the original monotone set function are discussed.
本文主要研究了一种新的积分,即:Lebesgue-Stieltjes形式的Choquet积分,以及由集值积分定义的单调集值集函数关于原单调函数的几种重要的结构特性的遗传性质。
补充资料:Lebesgue-Stieltjes积分
Lebesgue-Stieltjes积分
Lebesgue-Stidtjes integral
1划比s粤犯一Sdd扣积分【h加s邵犯~S创娜如魄阳l;Jle6-era一Clll~ca“。Te印“l I月犯s脾积分(玩bes胖加比g几。)的一种推广.对于非负测度料“玫besgue一Stieltjes积分”一词用于当X一R”,;为非玫城胖测度的情形;于是积分lxfd;像一般情形下玫besg优积分一样定义,若拜是变号的,则拜=拜:一拼2,这里拼:,拼2均为非负测度,而玫besgue一Stieltjes积分定义为 夕““一夕“。l一夕‘,2,只要右边两个积分存在.对X二R’情形,召的可数可加性与有界性条件等价于拼由某个有界变差函数中生成.此时玩比591姆一Stie均es积分可写为 b 丁,“,的形式.关于离散测度的玫besg姆.Stiel幼es积分实际上是一数项级数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条