1) Stieltjes integral
Stieltjes积分
1.
It is proved that under certain conditions,if ξ is given in the second mean value theorem of Stieltjes integral then limb→aξ-ab-a=kk+m 1/m.
证明了Stieltjes积分第二中值定理中的 ξ,在一定条件下有limb→aξ -ab -a =kk +m1/m 。
2.
It is proved that under certain conditions,if ξ is given in the second mean value theorem of Stieltjes integral,then lim b→aξ-ab-a=12.
证明了Stieltjes积分第二中值定理中的 ξ ,在一定条件下有limb→aξ-ab -a =12 。
3.
It is proved that in the mean value theorem of stieltjes integral,when b→a, ξ will terd to themean point of a and b.
证明了Stieltjes积分中值定理中的ξ,在一定的条件下,当b→a时,它将趋于a和b的中点,即。
2) Cauchy-Stieltjes integral
Cauchy-Stieltjes积分
1.
Taylor coefficients and multipliers of Cauchy-Stieltjes integrals;
泰勒系数和Cauchy-Stieltjes积分的乘子
2.
Some properties of Cauchy-Stieltjes integrals and their multipliers on the n-dimensional complex space are studied .
讨论了n维复空间Cn中Cauchy-Stieltjes积分Fnp及其乘子Mnp的一些性质。
3.
We consider the function space Fα consisting of Cauchy-Stieltjes integrals.
本文研究由Cauchy-Stieltjes积分形成的函数空间Fα。
3) Volterra-Stieltjes integral
Volterra-Stieltjes积分
1.
Solvability of nonlinear Volterra-Stieltjes integral equation;
非线性Volterra-Stieltjes积分方程的解
5) Henstock-Stieltjes integral
Henstock-Stieltjes积分
1.
In this paper, we introduce and investigate the Henstock-Stieltjes integral for Banach-valued function with respect to a real valued function defined on closed intervals of the real line.
本文引入闭区间上实值函数关于向量值函数的Henstock-Stieltjes积分,研究了Henstock- Stieltjes积分的性质,给出了Henstock-Stieltjes积分可积的充要条件,并得到了Henstock- Stieltjes积分的收敛定理,最后证明了向量值函数在闭区间上关于实值右连续函数是Pettis可积,那么必为Henstock-Stieltjes可积。
6) families of Stieltjes intergrals
Stieltjes积分族
补充资料:Stieltjes积分
Stieltjes积分
Stidtjes integral
承迢李s积分[S‘灼脚加魄”、;。~ca”眼印幼l R贻m出.积分(R油nanni血gfal)概念的一种推广,体现了一个函数f关于另一函数砚的积分概念.设两个函数f与u在〔a,bl定义且有界,并设a=丸<“
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条