1) Volterra-Stieltjes integral
Volterra-Stieltjes积分
1.
Solvability of nonlinear Volterra-Stieltjes integral equation;
非线性Volterra-Stieltjes积分方程的解
2) Volterra-Stieltjes type integral equation
Volterra-Stieltjes型积分
3) Volterra-Stieltjes integro-differential equations
Volterra-Stieltjes积分微分方程
4) Volterra-Stieltjes integral-differential operator
Volterra-Stieltjes积分微分算子
1.
It consists of four parts: (1) Ordinary differential operators generated by quasi-derivatives; (2) Complete analytic description of self-adjointness of ordinary differential operators; (3) Sturm-Liouville problems with weighted functions (including right-definite, left-definite and non-definite cases); (4) Volterra-Stieltjes integral-differential operators.
综合评述了Sturm-Liouville理论在近 30年内的若干新发展,主要内容包括如下4个方面:1 由拟导数所生成的微分算子;2 常微分算子自伴性的完全解析描述;3 带权函数的Sturm-Liouville问题(包括右定、左定和不定3种情形);4 Volterra-Stieltjes积分微分算子。
5) Cauchy-Stieltjes integral
Cauchy-Stieltjes积分
1.
Taylor coefficients and multipliers of Cauchy-Stieltjes integrals;
泰勒系数和Cauchy-Stieltjes积分的乘子
2.
Some properties of Cauchy-Stieltjes integrals and their multipliers on the n-dimensional complex space are studied .
讨论了n维复空间Cn中Cauchy-Stieltjes积分Fnp及其乘子Mnp的一些性质。
3.
We consider the function space Fα consisting of Cauchy-Stieltjes integrals.
本文研究由Cauchy-Stieltjes积分形成的函数空间Fα。
补充资料:Lebesgue-Stieltjes积分
Lebesgue-Stieltjes积分
Lebesgue-Stidtjes integral
1划比s粤犯一Sdd扣积分【h加s邵犯~S创娜如魄阳l;Jle6-era一Clll~ca“。Te印“l I月犯s脾积分(玩bes胖加比g几。)的一种推广.对于非负测度料“玫besgue一Stieltjes积分”一词用于当X一R”,;为非玫城胖测度的情形;于是积分lxfd;像一般情形下玫besg优积分一样定义,若拜是变号的,则拜=拜:一拼2,这里拼:,拼2均为非负测度,而玫besgue一Stieltjes积分定义为 夕““一夕“。l一夕‘,2,只要右边两个积分存在.对X二R’情形,召的可数可加性与有界性条件等价于拼由某个有界变差函数中生成.此时玩比591姆一Stie均es积分可写为 b 丁,“,的形式.关于离散测度的玫besg姆.Stiel幼es积分实际上是一数项级数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条