1) Quasi-lattice ordered group
拟格序群
1.
We construct ordered or quasily ordered groups, partial or quasi-partial ordered groups, and quasi-lattice ordered groups by choosing certain 2 by 2 upper triangular matrices.
利用二阶上三角矩阵分别构造了非交换的序群、拟序群、拟偏序群和拟格序群。
2.
Let ( C,C+) be a quasi-lattice ordered group, H a directed and hereditary subset of G,.
设(G,G_+)为一个拟格序群,H为G_+的可传定向子集,令C_H=G_+·H~(-1),~H为相应的Toeplitz算子代数。
2) quasi-integral lattice-ordered semigroup
拟整格序半群
3) quasily ordered group
拟序群
1.
We construct ordered or quasily ordered groups, partial or quasi-partial ordered groups, and quasi-lattice ordered groups by choosing certain 2 by 2 upper triangular matrices.
利用二阶上三角矩阵分别构造了非交换的序群、拟序群、拟偏序群和拟格序群。
2.
Let G be a discrete group and (G,P) a quasily ordered group.
设G为一离散群,(G,P)为一个拟序群。
4) quasi-partial ordered group
拟偏序群
1.
Let (G, G_+) be a quasi-partial ordered group such that G_+~0 = G+ ∩G_+~(-1) is a non-trivial subgroup of G.
设G为一个离散群,(G,G_+)为一个拟偏序群使得G_+~0=G_+∩G_+~(-1)为G的非平凡子群。
2.
We construct ordered or quasily ordered groups, partial or quasi-partial ordered groups, and quasi-lattice ordered groups by choosing certain 2 by 2 upper triangular matrices.
利用二阶上三角矩阵分别构造了非交换的序群、拟序群、拟偏序群和拟格序群。
5) lattice ordered groups
格序群
1.
A critical connection between torsion and semi simple classes of lattice ordered groups, viz Galois connection is developed and, using it, the existence of polar torsion class is studied and one of its expressions is given as well, so that the elemental theorems of torsion class of lattice ordered groups are extended.
建立了格序群扭类与半单类之间的一种重要联系Galois联络 ,利用这种联系研究了极扭类的存在性并且给出了极扭类的一种表示 ,推广了格序群扭类的基本定理 。
6) Lattice ordered group
格序群
1.
This paper discusses the property of maxmal prime subgroups of a lattice ordered groups and the structure of some classes decided by the root system of prime subgroups.
研究了格序群的极大素子群的性质以及由素子群根系确定的几种格序群类的结构。
2.
The following result has been proved in this paper The set T f of all torsion free radicals of lattice ordered groups is a ∨ infinite distributive complete lattice, the set T p of all principal torsion free radicals is an ideal of the lattice T
证明了如下结果:格序群的扭自由根式全体构成一个完备格且这个格满足并无限分配律,所有主扭自由根式构成这个格的一个理
3.
In this paper,we discuss the relations between large l-subgroups and dense L-subgroups of a lattice ordered group.
本文讨论了格序群的大l-子群与稠l-子群的若干关系。
补充资料:分配拟群
分配拟群
distributive quasi -group
分配拟群「业众面心锐q脚目一g川甲;及.eT一6yT二。a.Kna3llrPynoa] 满足左及右分配律 x·yz=义夕·淞,yz·x=yx·zx的拟群(ql姚i一gro叩).拟群中这两个分配律是互相独立的(存在左分配拟群但不是右分配拟群(【1】)).可引用有理数集Q作为分配拟群的例子,其运算是(x+y)/2.任何幂等中间拟群(认劝加切tn盆d词q姆i-grouP,即拟群Q,其中关系式尹“x及xy·训=郑·夕。对所有x,y,。,。任Q都成立)是分配拟群,一般情形下,每个分配拟群Q(·)同痕(切topy)于某个交换的M门血嗯么拟群(Moul触ngfoOP)(【31).分配拟群的共生拟群(paxas加Phy)(对于逆运算构成的拟群匆uasi一grouP”也是分配拟群且合痕于同一个交换的M otd汕g么拟群.设分配拟群中的四个元素a,b,c,d适合中间律(n址djal hw):曲·cd“ac·掀,则它们生成中间子拟群,特别地,分配拟群中任何三元家生成中间子拟群.在子拟群中平移是自同构,且在某种意义上,分配拟群是齐性的:没有元素和子拟群是特殊的.由有限分配拟群的全部右平移生成的群是可解群(【4]).【补注】陈l]中证明了阶为片…式‘的拟群(其中几为不同的素数,久是非负整数)皆同构于分配拟群Q:,…,Q*的直积,其中Q‘具有阶广且当八笋3时是Ab日拟群(即满足的·扭=禽·掀).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条