1) quasicommutative ordered semigroup
拟交换序半群
1.
The quasicommutative ordered semigroups and weakly primary ordered semigroups are defined.
定义了拟交换序半群和弱准素序半群,给出了拟交换序半群中弱准素序半群以及其所有理想是素理想的拟交换序半群的刻划。
2) quasi-commutative semigroup
拟交换半群
3) regular commutative ordered semigroup
正则交换序半群
1.
In this paper,we give some properties of regular commutative ordered semigroups relative to its prime ideal structure and give also some relations among the noetherianity,archimedeanity,regularity and the finitely generated property in the class of commutative ordered semigroups which are unions of a finite number of principal ideals.
给出了正则交换序半群的与素理想结构有关的若干性质。
4) ordered commutative semi-group
有序交换半群
1.
Moreover, we find the relations between WD-algebras and ordered commutative semi-group.
作为差代数的推广 ,本文引入了WD—代数的概念 ,给出了它的基本性质 ,建立了WD—代数与有序交换半群的联系。
5) commutative semi-group
交换半群
1.
In this paper,a kind of graph structure of a commutative semi-group S with zero element is defined and studied.
在交换半群上定义了一种图结构 ,并对相应的图的性质进行了描述。
2.
In this paper,a new commutative semi-group is established,and the results of the papers "the Expression Form of a Commutative Semi-group"and "the Extension and Application of Commutative Semi-group" are genelized and strengthed.
建立了一类新的交换半群,对《一个交换半群的元素的表示形式》、《一个交换半群的推广与应用》两文中半群的元素表示形式和结果进行了推广与加强。
3.
Based on the number set,a new commutative semi-group is established in the integer number and extended in number fields of rational number,real number and the complex number.
在数集的基础上,在整数域上建立了一个新的交换半群,并在有理数域、实数域和复数域上进行了推广;作为应用,讨论了其元素的表示形式。
6) commutative semigroup
交换半群
1.
Results: A series of equivalent conditions about judging p-semisimple element in BCH-algebra are given,and it proves that a commutative semigroup may be induced by a p-semisimple element in BCHalgebra.
结果:给出了p-半单元的一系列等价条件,证明了由每一个p-半单元可以诱导出一个交换半群,并给出了该交换半群成为交换群的条件。
2.
This paper considers the structure of free product of commutative semigroups and gives the structure of their maximal semilattice quotient and Archimedean components.
讨论交换半群的自由积的构造 ,给出其极大半格商及阿基米德分量的构
3.
In this paper,we first provide the existence theorems of fixed points for commutative semigroups of nonexpansive mappings in general Banach spaces.
主要在一般Banach空间中给出了非扩张交换半群不动点存在性定理,推广了Suzuki和Takahashi等人的相关工作。
补充资料:交换序
分子式:
CAS号:
性质: 按照离子交换树脂与各种离子间吸附交换能力大小排列起来的次序。已知交换序如下:对阳树脂而言,取代交换基中H+离子的能力依次是Li+<Na+<K+=NH4+<Rb+<Cs+,Mg2+<Ca2+<Sr2+对阴树脂而言,取代交换基中OH-离子的能力依次是Cl-<SO32-=NO3-<H2PO4-<HPO42-<HCO3-<CO32-。
CAS号:
性质: 按照离子交换树脂与各种离子间吸附交换能力大小排列起来的次序。已知交换序如下:对阳树脂而言,取代交换基中H+离子的能力依次是Li+<Na+<K+=NH4+<Rb+<Cs+,Mg2+<Ca2+<Sr2+对阴树脂而言,取代交换基中OH-离子的能力依次是Cl-<SO32-=NO3-<H2PO4-<HPO42-<HCO3-<CO32-。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条