说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 第二类Chebyshev-Fourier级数
1)  second Chebyshev-Fourier series
第二类Chebyshev-Fourier级数
1.
A theorem on estimate of pointwise approximation of bounded variation functions defined on by the partial sums of the second Chebyshev-Fourier series is obtained,and this theorem to monotonic type continuous functions is applied.
得到了第二类Chebyshev-Fourier级数部分和对[-1,1]上有界变差函数点态逼近估计的一个定理,并把这个定理应用于单调型连续函数。
2)  Chebyshev-Fourier series
Chebyshev-Fourier级数
1.
In this paper we construct a new operator Hn,r(f;x) through the partial sums S(α,β)n(f;x) of Chebyshev-Fourier series.
利用Chebyshev-Fourier级数的部分和S(nα,β)(f;x),通过线性组合的方法构造了一个新的算子Hn,r(f;x),该算子对于区间[-1,1]上的任意连续函数f(x)都一致收敛,并且对f(x)∈C[J-1,1],0≤j≤r(其中r为任意的奇自然数)其逼近阶达到最佳。
2.
This paper gives the estimates of the approximation of the Fejér sum of Chebyshev-Fourier series for the ω-type monotomic functions.
文章给出Chebyshev-Fourier级数Fejér和对ω-型单调函数的逼近估计。
3)  second Chebyshev function
第二类Chebyshev函数
4)  Chebyshev polynomial of the second kind
第二类Chebyshev多项式
5)  Chebyshev polynomials of the second kind
第二类Chebyshev多项式
1.
This paper is to study the approximation rate of the Grünwald interpolation polynomials to |x| on the zeros of Chebyshev polynomials of the second kind,and prove that the result can t be improved.
文章研究以第二类Chebyshev多项式零点为插值结点组的Grünwald插值多项式Gn(f,X;x)对|x|的逼近度,并证明其不可改进。
2.
In this paper we shall present a rather unique theory of Chebyshev polynomials of the second kind,Un,on the ground that from our point of view that it is Un that are easier to deal with.
为了展现第二类Chebyshev多项式的独特理论及其在分子轨道方面的应用,采用不完全归纳法、枚举法,研究两类Chebyshev多项式Un与Tn、正弦和余弦及其实际应用,给出了Un、Tn的三种等价定义,超几何函数表述、正交系以及在分子轨道方面的应用。
6)  the second kind of Chebyshev nodes
第二类Chebyshev结点
补充资料:Fourier-Bessel级数


Fourier-Bessel级数
Fourier-Bessd series

F仪的曰Jk洲日级数【F仪的“一D短目跳6巴;.冲砚一B叹-ee朋p:月1 函数f(x)的级数展开式 f(x)一瘩;、小:·封O一(·)其中f(x)是在区间(0,a)上给定的函数,人是V(”>一1/2)阶B图脱召函数(B留Sel functions),x;v)是J,的正零点,按增加的顺序排列;系数c。具有下列值: 2子,、,「了。、。1, C_=--二,,尸--代-一二育,二一lr了暇r,JI义三’.一I住r. “一J二.‘X止一尹】J,“, 一,,十,、’m,6L~J如果f(x)是在区间(0,a)上给定的逐段连续函数,而积分 丁介『‘r,,dr<‘’ 0则FO讼交r一B图Sel级数在区间(0,a)的每个内点x上收敛,其和等于[f(x十)+f(x一)】/2,且在每个内点x的邻域内,f(x)具有有界变差.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条