1) Fourier-Laplace series
Fourier-Laplace级数
1.
The estimate of the convergence rate of absolute summation is obtained in terms of equiconvergent operators for the Fourier-Laplace series of functions having BV properties on the unit sphere.
借助于等收敛算子,得到了球面上具有BV性质的函数的Fourier-Laplace级数的绝对求和的收敛速度的估计式。
2.
For a function f ∈ L(n-i) denote by σNδ(f) the Cesaro means of order δof the Fourier-Laplace series of f.
设f(x)为定义于n-维欧氏空间R~n中的单位球面∑(n-1)上的Lebesgue可积函数,σ_N~δ(f)表示f的Fourier-Laplace级数的Cesaro平均。
3.
In this paper,the approximation of Vallée Poussin means for Fourier-Laplace series is discussed.
本文研究了Fourier-Laplace级数VallePoussin平均的逼近性质,建立了VallePoussin平均的一致逼近度估计和几乎处处逼近的阶。
2) Fourier series
Fourier级数
1.
Fast nearfield beamforming algorithm based on the Fourier series approximation of the steering vector;
基于方向向量Fourier级数近似的近场波束形成快速算法
2.
The maximal Cesàro operator of Fourier series;
Fourier级数的极大Cesàro算子
3.
Generalized monotonic sequence and L ̄1-convergence of Fourier series;
广义单调序列与Fourier级数的L~1-收敛
3) Fourier series
Fourier 级数
1.
in this paper,the algorithm to the parameter estimation of linear delayed systems via Fourier series is (?)en.
本文给出了一种改进的用 Fourier 级数辨识延时线性系统的算法。
4) FourierBessel series
FourierBesel级数
5) Fourier-Bessel series
Fourier-Bessel级数
1.
Study on the property of the second harmonic in the nearfield of a Bessel ultrasonic field based on the Fourier-Bessel series;
基于Fourier-Bessel级数的Bessel型超声场二次谐波近场特性研究
2.
The plate deflection, load, reactive force of soil ground, and settlement of half-space surface under the plate are all expanded to the double Fourier-Bessel series, the unknown coefficients in those series are determined by the boundary conditions of plate, governing equation of plate, and continuous condition between plate-ground.
板的挠度、荷载、地基反力及板下地基表面的沉降均被展开为二重Fourier-Bessel级数,这些级数中的待定系数由板的边界条件、板的控制方程及板-地基的相容条件加以确定,从而将饱和弹性半空间地基与弹性薄圆板的动力相互作用问题转化为数值积分和代数方程组的求解问题。
3.
Basing on Fourier-Bessel series, the dynamic interactions between moderately thick circular plates and transversely isotropic saturated poroelastic half-space are investigated.
利用Fourier-Bessel级数,对横观各向同性饱和弹性半空间地基与中厚圆板的动力相互作用问题进行了系统地分析。
6) Chebyshev-Fourier series
Chebyshev-Fourier级数
1.
In this paper we construct a new operator Hn,r(f;x) through the partial sums S(α,β)n(f;x) of Chebyshev-Fourier series.
利用Chebyshev-Fourier级数的部分和S(nα,β)(f;x),通过线性组合的方法构造了一个新的算子Hn,r(f;x),该算子对于区间[-1,1]上的任意连续函数f(x)都一致收敛,并且对f(x)∈C[J-1,1],0≤j≤r(其中r为任意的奇自然数)其逼近阶达到最佳。
2.
This paper gives the estimates of the approximation of the Fejér sum of Chebyshev-Fourier series for the ω-type monotomic functions.
文章给出Chebyshev-Fourier级数Fejér和对ω-型单调函数的逼近估计。
补充资料:Fourier-Bessel级数
Fourier-Bessel级数
Fourier-Bessd series
F仪的曰Jk洲日级数【F仪的“一D短目跳6巴;.冲砚一B叹-ee朋p:月1 函数f(x)的级数展开式 f(x)一瘩;、小:·封O一(·)其中f(x)是在区间(0,a)上给定的函数,人是V(”>一1/2)阶B图脱召函数(B留Sel functions),x;v)是J,的正零点,按增加的顺序排列;系数c。具有下列值: 2子,、,「了。、。1, C_=--二,,尸--代-一二育,二一lr了暇r,JI义三’.一I住r. “一J二.‘X止一尹】J,“, 一,,十,、’m,6L~J如果f(x)是在区间(0,a)上给定的逐段连续函数,而积分 丁介『‘r,,dr<‘’ 0则FO讼交r一B图Sel级数在区间(0,a)的每个内点x上收敛,其和等于[f(x十)+f(x一)】/2,且在每个内点x的邻域内,f(x)具有有界变差.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条