1) Chebyshev series
Chebyshev级数
2) Chebyshev-Fourier series
Chebyshev-Fourier级数
1.
In this paper we construct a new operator Hn,r(f;x) through the partial sums S(α,β)n(f;x) of Chebyshev-Fourier series.
利用Chebyshev-Fourier级数的部分和S(nα,β)(f;x),通过线性组合的方法构造了一个新的算子Hn,r(f;x),该算子对于区间[-1,1]上的任意连续函数f(x)都一致收敛,并且对f(x)∈C[J-1,1],0≤j≤r(其中r为任意的奇自然数)其逼近阶达到最佳。
2.
This paper gives the estimates of the approximation of the Fejér sum of Chebyshev-Fourier series for the ω-type monotomic functions.
文章给出Chebyshev-Fourier级数Fejér和对ω-型单调函数的逼近估计。
3) second Chebyshev-Fourier series
第二类Chebyshev-Fourier级数
1.
A theorem on estimate of pointwise approximation of bounded variation functions defined on by the partial sums of the second Chebyshev-Fourier series is obtained,and this theorem to monotonic type continuous functions is applied.
得到了第二类Chebyshev-Fourier级数部分和对[-1,1]上有界变差函数点态逼近估计的一个定理,并把这个定理应用于单调型连续函数。
5) Chebyshev basis function
Chebyshev基函数
1.
Then fuzzy neural networks model and learning algorithm based on Chebyshev basis functions to be used as its membership functions were proposed for nonlinear system identification.
然后提出了一种用于复杂非线性系统辨识的基于Chebyshev基函数的模糊神经网络模型和学习算法。
2.
This paper presents an algorithm on the fuzzy neural network for the Chebyshev basis function to be used as its membership function.
将模糊控制与神经网络相结合,用神经网络来实现模糊推理,提出了一种以Chebyshev基函数为隶属函数的模糊神经网络。
6) general Chebyshev function
广义Chebyshev函数
1.
A novel method to determine the general Chebyshev filter degree and transmission zeros at the same time is proposed according to the extreme characteristic of the general Chebyshev function and the relationship between the filter degree and the number of transmission zeros.
本文利用广义Chebyshev函数的极值特性以及滤波器阶数与传输零点最大值的关系,提出了一种根据滤波器特性指标同时确定广义Chebyshev滤波器的阶数和传输零点位置的方法,弥补了传统方法中传输零点确定的人为随意性,在满足技术指标条件下,实现了广义Chebyshev滤波器阶数最少,传输零点位置最佳。
补充资料:d’Alembert准则(关于级数收敛性的)
d’Alembert准则(关于级数收敛性的)
d'Akmbert criterion (convergence of series)
如果 }u.,1 。一二]u。i则级数可能收敛也可能发散;两个级数 呈兴和呈一菩叫 自矿’m自在都满足这个条件,但第一个级数是收敛的,而第二个级数是发散的. 这个准则是J.d,A肠nbert确立的(1768). J’I,八.均刀p朋uea撰【补注】这个准则也称为比值检验法(mlio馏t),见[A 11.d,A如咧bert准则(关于级数收敛性的)【d’A如11加时州触.南n(。皿到段咨”沈Of Sed昭);八‘从aM6epa nPo3。奴} 对于数项级数 五u一如果存在数q,O
1. ”~田!u。!则这个级数发散.例如,对于一切复数z,级数 杀z” n.I月!绝对收敛,因为 I_”+11 }Z一} l(玲十l)!} 凡~仍}公一} }”:}而对于一切:砖。,级数艺篡1。!广发散,因为 俪」色山」兰兰上=十二. ”~田!n!2一!
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条