1) FourierBessel series
FourierBesel级数
2) Fourier series
Fourier级数
1.
Fast nearfield beamforming algorithm based on the Fourier series approximation of the steering vector;
基于方向向量Fourier级数近似的近场波束形成快速算法
2.
The maximal Cesàro operator of Fourier series;
Fourier级数的极大Cesàro算子
3.
Generalized monotonic sequence and L ̄1-convergence of Fourier series;
广义单调序列与Fourier级数的L~1-收敛
3) Fourier series
Fourier 级数
1.
in this paper,the algorithm to the parameter estimation of linear delayed systems via Fourier series is (?)en.
本文给出了一种改进的用 Fourier 级数辨识延时线性系统的算法。
4) Fourier-Bessel series
Fourier-Bessel级数
1.
Study on the property of the second harmonic in the nearfield of a Bessel ultrasonic field based on the Fourier-Bessel series;
基于Fourier-Bessel级数的Bessel型超声场二次谐波近场特性研究
2.
The plate deflection, load, reactive force of soil ground, and settlement of half-space surface under the plate are all expanded to the double Fourier-Bessel series, the unknown coefficients in those series are determined by the boundary conditions of plate, governing equation of plate, and continuous condition between plate-ground.
板的挠度、荷载、地基反力及板下地基表面的沉降均被展开为二重Fourier-Bessel级数,这些级数中的待定系数由板的边界条件、板的控制方程及板-地基的相容条件加以确定,从而将饱和弹性半空间地基与弹性薄圆板的动力相互作用问题转化为数值积分和代数方程组的求解问题。
3.
Basing on Fourier-Bessel series, the dynamic interactions between moderately thick circular plates and transversely isotropic saturated poroelastic half-space are investigated.
利用Fourier-Bessel级数,对横观各向同性饱和弹性半空间地基与中厚圆板的动力相互作用问题进行了系统地分析。
5) Chebyshev-Fourier series
Chebyshev-Fourier级数
1.
In this paper we construct a new operator Hn,r(f;x) through the partial sums S(α,β)n(f;x) of Chebyshev-Fourier series.
利用Chebyshev-Fourier级数的部分和S(nα,β)(f;x),通过线性组合的方法构造了一个新的算子Hn,r(f;x),该算子对于区间[-1,1]上的任意连续函数f(x)都一致收敛,并且对f(x)∈C[J-1,1],0≤j≤r(其中r为任意的奇自然数)其逼近阶达到最佳。
2.
This paper gives the estimates of the approximation of the Fejér sum of Chebyshev-Fourier series for the ω-type monotomic functions.
文章给出Chebyshev-Fourier级数Fejér和对ω-型单调函数的逼近估计。
6) complex Fourier Series
复Fourier级数
1.
On the basis of the mathematical elastic theory, the bending deflection expression of the complex Fourier Series is derived at first for the infinite plate with a unit circle.
应用弹性力学的复变函数理论,首先导出了圆孔无限大板弯曲挠度的复Fourier级数表达式,再把孔的边界条件进行复Fourier级数展开,用待定系数法确定级数的未知系数。
补充资料:Fourier级数(关于正交多项式的)
Fourier级数(关于正交多项式的)
rthogonal polynomials) Fourier series (in
F血的er级数(关于正交多项式的)【I饭的er sedes(加川如卿.1州ylm血‘);。”晓p,八(no opTOroHa‘-眼M,。oro呱。aM)] 形式为 艺。。p。(l) 月之0的级数,其中{尸。}是在区间(a,b)上关于权函数h正交的多项式系(见正交多项式(ort加即间即妙-no而alS)),系数{。。}由公式 b a。一J儿(*)f(*)尸。〔二)、(2)给出.这里,f属于函数类L:=L之f(a,b),h],即它的平方在正交性区间(a,b)上关于权函数h可和(玫比g比可积). 对任意正交级数,(l)的部分和{s。(x,f)}是f的依L:度量的最佳逼近,且a,满足条件 浊a。=0·(3)在证明级数(l)在一个点x或在(a,b)中的某个集合上收敛时,通常利用等式f(x)一s。(戈,f)=拜。汇a。(甲二)只十;一a。+:(价二)只(x)l,其中{a。(叭)}是辅助函数毋二的Founer系数,对于固定的x, 川门=力匕2二丛兰上.。。(。.bl. X一汇而拼。是由Cll南.川回{抽均.以公式(Ch由toffel一Dar·boux fonn“巨)给出的系数.如果正交性区间[a,b]有限,毋乒几且序列笼只圣在给定的点x有界,则级数(l)收敛到值f(x). 对于f6L一L:l(a,b),h」,即在区间(a,b)上关于权函数h可和的函数类,也可定义系数(2).对有限区间!a,b],如果f“L,【(a,b),hl且序列{凡}在整个区间[a,b]上一致有界,则条件(3)成立.在这些条件下,在点x可a,bJ处如果叭〔L,I(a,b),h],则级数(l)收敛到值f(x). 设A是区间(a,b)中的某个集合,序列王尸。}在A上一致有界,设B=[a,b〕\A,记L,(A)‘L,【A,川是在A上关于权函数h的p次可和的函数类.如果对固定的x已Al,有叭任L,(A)及叭。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条