1) AF C*-algebra
AF C*-代数
1.
We study Lie ideals in unital AF C*-algebras.
本文描述了AF C*-代数中闭Lie理想,证明了如果AF C*-代数A中的线性流形L 是A的闭Lie理想,则存在A的闭结合理想I和A的典型masa D中的闭子代数EI使得[A,I](?)L(?)I+EI,并且A中每一个这种形式的闭子空间都是A的闭Lie理想。
2) AF algebra
AF C~*-代数
3) (AF) real C*-algebra
(AF)实C~*-代数
4) Subalgebra of AF C-algebra
AF C-代数中的子代数
5) C*-algebras
C*-代数
1.
A conclusion is drawn that the K0 groups of simple C*C*-algebras which possess tracial-NG properties have NG properties.
研究C*-代数K0群的弱无孔性质、Riesz内插值性质,把这2种性质统称为NG性质;并且引入具有迹-NG性质的C*-代数概念。
2.
One *-isomorphism of C*C*-algebras must be (completely) isometric map, but the inverse is not.
C*-代数的*-同构一定是(完全)等距映射,反之不然。
3.
The paper also presents the answer to the lifting problems of the projections of the corresponding quotient C*C*-algebras.
利用C*-代数I具有由投影组成的近似单位元的条件,给出了一类M(I)中以I作为理想的C*-子代数,证明每一个这样C*-子代数的任何元素,均为弱拟对角化以及这些C*-子代数之间的关系,同时回答了相应商代数投影的提升问题。
6) C~*-algebra
C*代数
1.
An introduction to the definition of the simple tracial limit of C~*-algebra is first made in this paper.
引进了简单迹极限的相关概念,简单介绍了与C*代数SP性质密切相关的F性质,并且得到了非基本的单的具有SP性质的C*代数具有F性质。
参考词条
Nuclear C*-代数
σ-C*-代数
实C-代数
C代数
Pro-C*-代数
C~*代数
C 代数
实~C*-代数
C代数
素C*-代数
素C~*-代数
实C~*-代数
管道自动输送
近海产卵场
补充资料:代数的代数
代数的代数
algebraic algebra
代数的代数【aigeb面c aigeb口;缸代6脚盼贬军粗,即;浦钾! 域F上幂结合代数洲特别地结合代数飞.其所有兀素都是代数的几素a任月称为代数的(al罗bral口,如果由“生成的子代数F!a]是有限维的或等价地、兀素a有系数在基域F中的零化多项式).代数A称为有界次代数的代数(al罗braie al罗bra of bounded de-gee)如果它是代数的月其元素的极小零化多项式的次数的集合是有界的.有界次代数的代数的子代数与同态象仍是有界次代数的代数 例:局部有限代数(特别地有限维代数)、诣零代数及不可数域仁有。J数雌一成兀集的结合除环.下面假定所涉及的代数均为结合的,代数的代数的J匆以由son根(J aoobson radl以l)是诣零理想本原代数的代数A同构于除环上向匿空间的线性变换的稠密代数,如果A还是有界次的,则A同构于除环1的矩阵环.有限域上没有非零幂零元的代数的代数(特别地,除环)是交换的.因此,有限除环是交换的.有界次代数的代数满足一个多项式恒等式、见Pl代数(P卜algebra).代数的Pl代数是局部有限的.如果基域是不可数的,则由代数的代数通过基域的扩张所得到的代数,及代数的代数的张量积,都是代数的代数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。