说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 单C*-代数
1)  Simple C*-algebra
单C*-代数
2)  unital pre-C~*-algebra
单位准C~*-代数
3)  purely infinite simple C*-algebra
纯无限单C*-代数
4)  C*-algebras
C*-代数
1.
A conclusion is drawn that the K0 groups of simple C*C*-algebras which possess tracial-NG properties have NG properties.
研究C*-代数K0群的弱无孔性质、Riesz内插值性质,把这2种性质统称为NG性质;并且引入具有迹-NG性质的C*-代数概念。
2.
One *-isomorphism of C*C*-algebras must be (completely) isometric map, but the inverse is not.
C*-代数的*-同构一定是(完全)等距映射,反之不然。
3.
The paper also presents the answer to the lifting problems of the projections of the corresponding quotient C*C*-algebras.
利用C*-代数I具有由投影组成的近似单位元的条件,给出了一类M(I)中以I作为理想的C*-子代数,证明每一个这样C*-子代数的任何元素,均为弱拟对角化以及这些C*-子代数之间的关系,同时回答了相应商代数投影的提升问题。
5)  C~*-algebra
C*-代数
1.
In this paper,we show that if A is a simple unital C~*-algebra with tracial stable rank one and SP property,then A has cancellation of projections.
证明了如果A是单的有单位元的C*-代数满足Tsr(A)=1,并且具有SP性质(对于A的任意非零可传C-子代数B,B都包含一个非零的投影),则A具有投影的消去律。
2.
This paper studies the properties of a matrix-trace on C~*-algebra M_n(A) which is a positive linear mapping τ∶M_n(A)→A such that τ(u~*au)=τ(a)(a∈(M_n(A),)u∈U(M_n(A))) and τ(a~2)≤(τ(a))~2(a≥0), and obtains some inequalities.
C*-代数Mn(A)上矩阵迹是一个正线性映射τ∶Mn(A)→A且满足τ(u*au)=τ(a)(a∈Mn(A),u∈U(Mn(A)))及τ(a2)≤(τ(a))2(a≥0)。
3.
The α-Power Geometric Mean and Generalized Spectral Geometric Mean of Two Positive Definite Elements in a C~*-algebra;
引入并研究了C*-代数中两个正定元a与b的α-幂几何平均gα(a,b)与广义谱几何平均Eα(a,b),且由此证明了一系列相关的性质和定理。
6)  C~*-bialgebra
C双代数
1.
Haar Measures on C~*-bialgebras;
C双代数上的Haar测度
补充资料:半单Lie代数


半单Lie代数
Lie algebra, semi-simple

  联系.I补注]前面提到的定义关系(adX二‘)’一”(‘,j)(x。,)二O以S毗关系(决nlre拍tions)闻名. 通常利用所谓及问血甲(D,Ikindiag;l璐)给出包含在Cari冶n矩阵A。一G:中的信息.弃由对应的D娜面n图(p抑kin diaglam,有时也称为切面n脚ph)所揭示的Ca到五n矩阵的规则如下.给顶点一个标号,例如 1 3 4 5 6 78·,{ 2在Ca月么n矩阵的对角线上所有元素都等于2.如果顶点i和j不直接相连,那么矩阵元aj‘=aij=0·如果顶点i,j由一个边直接相连,那么a,,=一1=几‘.如果顶点i,j由2个,或3个边直接相连,且有由i到j的箭,则a。=一2,aj‘=一1,或相应地a‘,=一3,a,‘=一l·iH。.X:一X一。,i(X。+X一。)(“Cz+)在R上的线性包是g的一个紧实形式. 一个半单Lie代数在同构意义下被其Cartan子代数和对应的根系完全确定.严格地说,如果g、和g:都是k上半单Lie代数,b,和勺:是它们的Car-tan子代数,而工,和名:是对应的根系,那么每个能导出艺!和22同构的b!~b:的同构都可以扩张成g:~92的同构.另一方面,任意约化根系均可看作是某个半单Lie代数的根系.于是,一个代数闭域此上的半单Lie代数(对应地,非交换的单Lie代数)的分类本质上与约化根系(对应地,不可约的约化根系)的分类一致. 对应于A型一D型根系的单Lie代数称为典型的(cl创骆ical),且有如下形式. A。型(n)1).9=弓L(n+l,k),由空间k”+’的迹为0的线性变换组成;dimg=n(n十2) B。型(n)2).9=易。(2。+I,k),由空间kZ”斗’的对于给定的非奇异对称双线性型斜对称的线性变换组成;dimg=n(Zn十1). C,型(n)3).9=易p(n,儿),由空I’edk2”的对于给定的非奇异斜对称双线性型斜对称的线性变换组成;山mg=n(Zn+l). D。型(n)4).9=易。(Zn,k),由空间k,月的对于一个给定的非奇异对称双线性型斜对称的线性变换组成;diing=n(2。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条