说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 参数型Marcinkiewicz积分
1)  parametric Marcinkiewicz integral
参数型Marcinkiewicz积分
1.
we prove that the parametric Marcinkiewicz integral μρΩ is an operator of type(Hp,∞,Lp,∞)(0<p≤1),if Ω∈Lipα is a homogeneous function of degree zero.
证明了参数型Marcinkiewicz积分μρΩ是(Hp,∞,Lp,∞)(0
2.
In this paper, we will prove that the parametric Marcinkiewicz integrals μ~ρ_Ω is an operator of type (H~p, L~p) (0<p≤1).
主要得到了一类参数型Marcinkiewicz积分μρΩ是(Hp,Lp)型算子的结果,这里0
3.
In this article, the authors study the boundness of the parametric Marcinkiewicz integral.
本文研究了BMO空间上参数型Marcinkiewicz积分的有界性。
2)  parametric Marcinkiewicz
参数型Marcinkiewicz
1.
Letμ~ρbe the parametric Marcinkiewicz singular integral operatorwhereLet b be a locally integrable function on R~n, the higher-order commutator of parametric Marcinkiewicz integralμ_(b~m)~ρgenerated by the function b and the operatorμ~ρis defined bywherefor suitable functions f.
设μ~ρ为参数型Marcinkiewicz奇异积分算子其中设b为R~n上的局部可积函数,∫为合适的函数,定义由函数b和算子μ~ρ生成的参数型Marcinkiewicz积分高阶交换子μ_(b~m)~ρ为在本文中,作者主要考虑了粗糙核参数型Marcinkiewizc积分算子与BMO函数生成的高阶交换子的在加权L~p空间的有界性,以及它的双权弱型不等式。
3)  vector-valued commutator for parametric Marcinkiewciz integral
向量值参数型Marcinkiewicz积分交换子
4)  Marcinkiewicz integral
Marcinkiewicz积分
1.
Weighted boundedness of commutators of the Marcinkiewicz integrals;
Marcinkiewicz积分交换子的加权有界性
2.
Boundedness of certain Marcinkiewicz integral operators on product spaces;
乘积空间上一类Marcinkiewicz积分算子的有界性
3.
Boundedness of certain Marcinkiewicz integral operators;
一类广义的Marcinkiewicz积分算子的有界性
5)  Marcinkiewicz integral
Marcinkiewicz积分算子
1.
consider a class of Marcinkiewicz integrals M(f)(x)=[integral form n=0 to ∞│∫_(x-y)≤tk(x,y)f(y)dμ(y)│~2dt/t~3]1/2,x∈R~d,,The boundness on Herz space and the boundness from Herz spaces to weak Herz spaces are established.
考虑如下的Marcinkiewicz积分算子:M(f)(x)=[integral form n=0 to ∞│∫_(x-y)≤tk(x,y)f(y)dμ(y)│~2dt/t~3]1/2,x∈R~d,其中,μ为非倍测度。
2.
The boundedness of Marcinkiewicz integral operator μ Ω,b on product spaces R n× R m(n, m≥2) is studied.
研究了带径向函数的粗糙核的Marcinkiewicz积分算子 μΩ ,b在乘积空间Rn×Rm(n ,m≥ 2 )中的有界性 。
6)  Marcinkiewicz integral operator
Marcinkiewicz积分算子
1.
The boundedness results on the homogeneous(Morrey-Herz) spaces are established for the Marcinkiewicz integral operator with rough kernel.
证明了带粗糙核的Marcinkiewicz积分算子在齐次Morrey-Herz空间MKp,α,λq(Rn)上的有界性;同时还得到了该算子在弱齐次Morrey-Herz空间WMKp,α,1λ上的有界性结果。
2.
The boundedness results on the homogeneous Morreg-Herz spaces MK(?)(R~n) were established for the commutators generated by Marcinkiewicz integral operators with rough kernels and BMO (R~n) func- tions.
证明了一类带粗糙核的Marcinkiewicz积分算子与BMO(R~n)函数生成的交换子在齐次Morrey- Herz空间M(?)_(p,q)~(α,λ)(R~n)上的有界性。
3.
In this thesis, we investigate the boundedness of Fourier integral operatorand multilinear commutators of Marcinkiewicz integral operator with smoothfunction.
本文主要研究了Fourier积分算子以及Marcinkiewicz积分算子与Lipschitz函数生成的多线性交换子在Hardy型空间上的有界性问题。
补充资料:参数积分表示法


参数积分表示法
arametric integral-representation method

  的那些点所组成的集合U的闭凸包R(U)重合,其中诸u*(t)是fa,们上固定的连续实值函数,拜(t)任M“,(Riesz定理(theorem of凡esz)). 2)每个点x二(x,,·,x,)〔R(U)CR”可表示为如下形式 x‘一,冬“,“*(r,),k一,,…,。,其中、,>O,,二l,一,。,艺典、、,二1,。簇n+l,而且当x‘aR(U)时,则有m簇n(Carath亡浏。理定理(Carath己司。ry theorem)). 3)至少存在一个非减函数拼(t),“城:续b,使得 h J、,*(:,J。(。,一:*,*一,,…,n,其中 、,:(t)三1,,,*(t)=“*(t)+iv*(t), k=l,…,n,。*(t),v*(t)是汇a,b}上给定的实值连续函数,下,>o,少*是给定的复数,当且仅当只要复数戊,,…,气满足 万.[:*,,*(‘)+面*订*(‘)1)“,a“(“,便有 蘑、仁:*:*+了*:*])o(Riesz定理), 这些定理使得人们能够给出圆盘(或圆环)内具有正实部的正则函数类,或圆盘(或圆环)内典型实正则函数类,以及某些别的函数类的系数组与单个系数的值域的几何与代数特征(见〔11,附录;t4],1 51).参数积分表示法[皿ametric加teg口卜r印rese成a6闭脱-t卜月;naPaMeTP“叨ecICHx“HTerp幼‘.ux皿Pe皿cTaBJIe-H“蓝MeTO压〕 单复变几何函数论中用以求解一些函数类的极值问题的一种方法,系通过将这些函数类用依赖于参数的积分表示来实现. 在这些函数类之中,有Carath如向ry类(Cara-th6odory dass),圆盘内星形单叶函数类与典型实函数类(见星形函数(star.泳e haletion)与典型实函数(tyPica勿一real function)).这些函数类的函数有各种参数表示,包括Stieltjes积分 b 丁。(:,,)过。(:),“,b是给定的实数,g(z,t)是给定的函数(该函数类的核),产(t)〔M。,。,此处M。,。是Ia,b]上非减函数类,拼(b)一“(a)二l(“是该函数类的参数). 对于具有Stieltjes积分参数表示的函数类,已得到的变分公式表明,这些函数类的极值间题的解的极值函数具有如下形式: f(z)二艺又*。(:,:*),几*)o,艺又*二l, k二Ik自1其中t*任【a,b],m的值已知(参看[1]的第11章,[3」). 对于求解这些函数类上的泛函与泛函组的值域,下列定理往往是有用的. 1)。维EucM空间R”中可表示为 b 、、一丁“*(:)、;(。),、一1,:,…,。的点x=(x,,,二,x。)的集合B,同 x*二u*(t),k=l,2,…,n,a‘t‘b
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条