说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Marcinkiewicz型和
1)  Marcinkiewicz-type sum
Marcinkiewicz型和
1.
The estimate of Marcinkiewicz-type sum was(p,q)-th strongly approximation for every positive real number,therefore the positive theorem was obtainecl.
主要研究了由三角插值多项式构造的周期为2π的二元连续函数的Marcinkiewicz型和的(p,q)阶r次强性逼近问题,得到了强性逼近的正定理。
2)  parametric Marcinkiewicz
参数型Marcinkiewicz
1.
Letμ~ρbe the parametric Marcinkiewicz singular integral operatorwhereLet b be a locally integrable function on R~n, the higher-order commutator of parametric Marcinkiewicz integralμ_(b~m)~ρgenerated by the function b and the operatorμ~ρis defined bywherefor suitable functions f.
设μ~ρ为参数型Marcinkiewicz奇异积分算子其中设b为R~n上的局部可积函数,∫为合适的函数,定义由函数b和算子μ~ρ生成的参数型Marcinkiewicz积分高阶交换子μ_(b~m)~ρ为在本文中,作者主要考虑了粗糙核参数型Marcinkiewizc积分算子与BMO函数生成的高阶交换子的在加权L~p空间的有界性,以及它的双权弱型不等式。
3)  Marcinkiewicz type inequality
Marcinkiewicz型不等式
4)  strong law of large numbers
Marcinkiewicz型强大数定律
1.
On the Marcinkiewicz strong law of large numbers for product sums of pairwise NQD series with different distributions;
关于不同分布两两NQD列乘积和的Marcinkiewicz型强大数定律
2.
In this paper,we discuss the Marcinkiewicz strong law of large numbers for product sums of a class of dependent random variable series,improve the corresponding results and obtain some new results.
研究了一类相依随机变量序列乘积和的Marcinkiewicz型强大数定律,推广了现有乘积和情形类似的结论。
5)  parametric Marcinkiewicz integral
参数型Marcinkiewicz积分
1.
we prove that the parametric Marcinkiewicz integral μρΩ is an operator of type(Hp,∞,Lp,∞)(0<p≤1),if Ω∈Lipα is a homogeneous function of degree zero.
证明了参数型Marcinkiewicz积分μρΩ是(Hp,∞,Lp,∞)(0
2.
In this paper, we will prove that the parametric Marcinkiewicz integrals μ~ρ_Ω is an operator of type (H~p, L~p) (0<p≤1).
主要得到了一类参数型Marcinkiewicz积分μρΩ是(Hp,Lp)型算子的结果,这里0
3.
In this article, the authors study the boundness of the parametric Marcinkiewicz integral.
本文研究了BMO空间上参数型Marcinkiewicz积分的有界性。
6)  Marcinkiewicz strong law
Marcinkiewicz型强大数律
1.
We discussed the Marcinkiewicz strong law of a type linear U-statistics of NA sequences {X,X_i∶i≥1}.
在权{ani∶1≤i≤n,n≥1}满足Aα=limsupn→∞Aα,n=limsupn→∞1n∑ni=1aniα1α<∞的条件下,讨论了NA列{X,Xi∶i≥1}构成的一类线性U-统计量的Marcinkiewicz型强大数律。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8

性质:暂无

制备方法:暂无

用途:用于轻、中度原发性高血压。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条