说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多重Marcinkiewicz积分
1)  Multiple Marcinkiewicz integral
多重Marcinkiewicz积分
2)  Marcinkiewicz integral
Marcinkiewicz积分
1.
Weighted boundedness of commutators of the Marcinkiewicz integrals;
Marcinkiewicz积分交换子的加权有界性
2.
Boundedness of certain Marcinkiewicz integral operators on product spaces;
乘积空间上一类Marcinkiewicz积分算子的有界性
3.
Boundedness of certain Marcinkiewicz integral operators;
一类广义的Marcinkiewicz积分算子的有界性
3)  Marcinkiewicz integral
Marcinkiewicz积分算子
1.
consider a class of Marcinkiewicz integrals M(f)(x)=[integral form n=0 to ∞│∫_(x-y)≤tk(x,y)f(y)dμ(y)│~2dt/t~3]1/2,x∈R~d,,The boundness on Herz space and the boundness from Herz spaces to weak Herz spaces are established.
考虑如下的Marcinkiewicz积分算子:M(f)(x)=[integral form n=0 to ∞│∫_(x-y)≤tk(x,y)f(y)dμ(y)│~2dt/t~3]1/2,x∈R~d,其中,μ为非倍测度。
2.
The boundedness of Marcinkiewicz integral operator μ Ω,b on product spaces R n× R m(n, m≥2) is studied.
研究了带径向函数的粗糙核的Marcinkiewicz积分算子 μΩ ,b在乘积空间Rn×Rm(n ,m≥ 2 )中的有界性 。
4)  Marcinkiewicz integral operator
Marcinkiewicz积分算子
1.
The boundedness results on the homogeneous(Morrey-Herz) spaces are established for the Marcinkiewicz integral operator with rough kernel.
证明了带粗糙核的Marcinkiewicz积分算子在齐次Morrey-Herz空间MKp,α,λq(Rn)上的有界性;同时还得到了该算子在弱齐次Morrey-Herz空间WMKp,α,1λ上的有界性结果。
2.
The boundedness results on the homogeneous Morreg-Herz spaces MK(?)(R~n) were established for the commutators generated by Marcinkiewicz integral operators with rough kernels and BMO (R~n) func- tions.
证明了一类带粗糙核的Marcinkiewicz积分算子与BMO(R~n)函数生成的交换子在齐次Morrey- Herz空间M(?)_(p,q)~(α,λ)(R~n)上的有界性。
3.
In this thesis, we investigate the boundedness of Fourier integral operatorand multilinear commutators of Marcinkiewicz integral operator with smoothfunction.
本文主要研究了Fourier积分算子以及Marcinkiewicz积分算子与Lipschitz函数生成的多线性交换子在Hardy型空间上的有界性问题。
5)  parametric Marcinkiewicz integral
参数型Marcinkiewicz积分
1.
we prove that the parametric Marcinkiewicz integral μρΩ is an operator of type(Hp,∞,Lp,∞)(0<p≤1),if Ω∈Lipα is a homogeneous function of degree zero.
证明了参数型Marcinkiewicz积分μρΩ是(Hp,∞,Lp,∞)(0
2.
In this paper, we will prove that the parametric Marcinkiewicz integrals μ~ρ_Ω is an operator of type (H~p, L~p) (0<p≤1).
主要得到了一类参数型Marcinkiewicz积分μρΩ是(Hp,Lp)型算子的结果,这里0
3.
In this article, the authors study the boundness of the parametric Marcinkiewicz integral.
本文研究了BMO空间上参数型Marcinkiewicz积分的有界性。
6)  hyper Marcinkiewicz integral
超奇异Marcinkiewicz积分
补充资料:多重积分


多重积分
I

  多重积分【m日ti沙抽峡,1;即aTB戚IIHTe印盯] 多变量函数的一种定积分.有几种不同的多重积分概念(R允rr以Im积分,此bes胖积分,玩比邵胆一Stie-ltjes积分,等等). 重Rien坦Lnn积分是以玉川白n测度(Jo宜坛n能a-s眠)拜为基础的.设E为n维E孤lid空间R”中的一Jo攻场n可测集,拌。为n维为已汕测度,并设:={E,})一,为E的一个分划,即一组Jorchn可测集E:,满足U卜:E。=E且拼。(E‘自E,)=0(i护j,i,j=1,…,n).令d(E。)表示E‘的直径,量 占:=n以xd(E,) f~.,,k称为分划:的网格(mesh of the paltjtion).若f(x)(x=(x.,‘·‘,x。”为在E上定义的函数,则任何形如 k a一‘·(f;亡‘”,“‘,“‘,)一各f(“‘,)。·(“,), 别‘)‘E“:的和称为函数f的Rjen旧田n积分和(R打nann inte脚1sUIn)·若lim‘,一。叮:存在且不依赖于特殊的分划序列,则此极限称为f在E上的n重Ri日比以nn积分(n~tup】eR七m田min唤归1)并记成 ff(二)d、或f…ff(二,..…二_、d:.…d二_. 若“E.函数f本身称为RIOrr以朋可积的(Rjen正比田illteg-mble)或简称R可积的(R一泊忱脚b」e). 当。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条