2) Map-based Self-localization
自主移动机器人自定位
3) mobile robot localization
移动机器人定位
1.
Secondly,the progress of mobile robot localization based on particle filters is described.
然后,介绍了基于粒子滤波器的移动机器人定位研究进展。
2.
In order to resolve the problem of mobile robot localization with unknown noise characteristics,this paper proposed a mobile robot localization method based on fuzzy-adapted extended Kalman filtering.
针对移动机器人定位过程中噪声统计特性不确定的问题,提出一种模糊自适应扩展卡尔曼滤波定位方法。
4) indoor localization for mobile robot
移动机器人室内定位
5) autonomous mobile robot
自主移动机器人
1.
Research on navigation complexity for autonomous mobile robots under dynamic environments;
动态环境下自主移动机器人的导航复杂性
2.
Designing of Autonomous Mobile Robot based on FPGA;
基于FPGA的自主移动机器人运动控制设计
3.
Multi-agent based hybrid architecture for autonomous mobile robot;
基于多智能体的自主移动机器人混合式体系结构
补充资料:移动机器人
一种由传感器、遥控操作器和自动控制的移动载体组成的机器人系统。移动机器人具有移动功能,在代替人从事危险、恶劣(如辐射、有毒等)环境下作业和人所不及的(如宇宙空间、水下等)环境作业方面,比一般机器人有更大的机动性、灵活性。
60年代后期,美国和苏联为完成月球探测计划,研制并应用了移动机器人。美国"探测者"3号,其操作器在地面的遥控下,完成了在月球上挖沟和执行其他任务。苏联的"登月者"20号在无人驾驶的情况下降落在月球表面,操作器在月球表面钻削岩石,并把土壤和岩石样品装进回收容器并送回地球。70年代初期,日本早稻田大学研制出具有仿人功能的两足步行机器人。为适应原子能利用和海洋开发的需要,极限作业机器人和水下机器人也发展较快。
移动机器人随其应用环境和移动方式的不同,研究内容也有很大差别。其共同的基本技术有传感器技术、移动技术、操作器、控制技术、人工智能等方面。它有相当于人的眼、耳、皮肤的视觉传感器、听觉传感器和触觉传感器。移动机构有轮式(如四轮式、两轮式、全方向式、履带式)、足式(如 6足、4足、2足)、混合式(用轮子和足)、特殊式(如吸附式、轨道式、蛇式)等类型。轮子适于平坦的路面,足式移动机构适于山岳地带和凹凸不平的环境。移动机器人的控制方式从遥控、监控向自治控制发展,综合应用机器视觉、问题求解、专家系统等人工智能等技术研制自治型移动机器人。
移动机器人除用于宇宙探测、海洋开发和原子能等领域外,在工厂自动化、建筑、采矿、排险、军事、服务、农业等方面也有广泛的应用前景。
60年代后期,美国和苏联为完成月球探测计划,研制并应用了移动机器人。美国"探测者"3号,其操作器在地面的遥控下,完成了在月球上挖沟和执行其他任务。苏联的"登月者"20号在无人驾驶的情况下降落在月球表面,操作器在月球表面钻削岩石,并把土壤和岩石样品装进回收容器并送回地球。70年代初期,日本早稻田大学研制出具有仿人功能的两足步行机器人。为适应原子能利用和海洋开发的需要,极限作业机器人和水下机器人也发展较快。
移动机器人随其应用环境和移动方式的不同,研究内容也有很大差别。其共同的基本技术有传感器技术、移动技术、操作器、控制技术、人工智能等方面。它有相当于人的眼、耳、皮肤的视觉传感器、听觉传感器和触觉传感器。移动机构有轮式(如四轮式、两轮式、全方向式、履带式)、足式(如 6足、4足、2足)、混合式(用轮子和足)、特殊式(如吸附式、轨道式、蛇式)等类型。轮子适于平坦的路面,足式移动机构适于山岳地带和凹凸不平的环境。移动机器人的控制方式从遥控、监控向自治控制发展,综合应用机器视觉、问题求解、专家系统等人工智能等技术研制自治型移动机器人。
移动机器人除用于宇宙探测、海洋开发和原子能等领域外,在工厂自动化、建筑、采矿、排险、军事、服务、农业等方面也有广泛的应用前景。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条