2) harmonic function
调和函数
1.
Integral Representation and Estimation of Harmonic Functions in Half-Plane;
半平面中调和函数的积分表示和估计
2.
The Dirichlet boundary value problem for harmonic function;
调和函数的Dirichlet边值问题
3) A-harmonic functions
A-调和函数
1.
Then,we further obtain that each bounded weak solution is of sharp Hlder exponent with anyγ:0≤γ<k under the additional data regularity assumptions,where k is just as the local Hlder index of A-harmonic functions.
利用Moser-Nash迭代和稠密引理,得到了在自然增长下的非线性退化椭圆方程有界弱解具有某一Hlder指数的正则性;在已知数据的进一步正则性下,建立了具有任意γ满足0≤γ<κ的优化Hlder连续性指数,其中κ是A-调和函数的局部Hlder连续指数。
4) harmonic functions
调和函数
1.
karp to prove that on such kind of 2 Mfd which curvature k≥-1r 2 log r outside a compact set there exist no nonconstant subharmonic functions which bounded f.
Karp的方法证明:在某个紧致集外满足曲率k≥-1r2logr的二维流形上不存在有上界的非常值下调和函数。
2.
In this paper, applying Life theory of complex-functional, not only the space harmonic functions in polynomial form but also the spherical functions are obtained.
本文以泛复变函数为工具,成功地构造出多项式型空间调和函数族,通过坐标变换和正交化过程,进而又获得了球函数。
3.
It is proved for harmonic functions an integral identity.
本文推导出调和函数的一个积分恒等式,并把这个结果推广到方程△_pu=0(P>1)的解的情形。
5) harmonic functions
拟调和函数
1.
The basic equations are generalized from those of the transversely isotropic magneto-electro-elastic media, and the general solutions in forms of harmonic functions in the case of distinct eigenvalues are derived.
从横观各向同性磁电弹性体的三维基本方程出发,简化得到平面问题的基本方程,给出了用4个拟调和函数表达的4个特征根互异情况下的通解,进而以试凑法推导出了自由端作用集中力的悬臂磁电弹性梁的位移、电势、磁势、应力、电位移和磁通密强度的解析解,所得解易于理解、便于校对、形式简洁。
2.
The basic equations are generalized from those of the transversely isotropic magnetoelectroelastic media, and the general solution in forms of harmonic functions in the case of distinct eigenvalues are derived.
从横观各向同性磁电弹性体的三维基本方程出发,简化得到平面问题的基本方程,给出了用四个拟调和函数表达的四个特征根互异情况下的通解,进而以试凑法推导出了均布荷载作用下简支磁电弹性梁的位移、电势、磁势、应力、电位移和磁通密强度的解析解,所得解有易于理解、便于校对、形式统一简洁的特点。
6) B-harmonic function
B-调和函数
补充资料:球面调和函数
球面调和函数
spherical harmonics
球面调和函数〔砂曰以抽加.‘。;c取p加,ec绷呷-MO“皿a」,k次的 n元变量x=(x;,…,x。)的k次齐次调和多项式(ha“no拍cpol,刃而司)h(倪)(x)在E比工d空间尸(。)3)中的单位球面S”一’上的限制.特别地,当n=3时、球面调和函数即为经典的球面函数(sphe石calfL川etions). 设x任E”,x笋0,令r=}x},则义‘二x/r任Sn一’.球面调和函数的基本性质是正交性质(pIOPertyof ortho即1灿ty):设Y(k)(x)和Y(‘)(x)分别是人阶和l阶球面调和函数且k沪l,则 r JY,此,(x’)Y,‘,(x’)dx‘=o· ‘一趁最简单的球面调和函数是带球面调和函数(助nal sPhe-脱lhanl〕0~).对任意t’〔S”一’及任意k>O,存在一个带球面调和函数z,’(x’),它在球面s”一’的与向量亡’垂直的任意一个平行截口上都等于常数.当n=3和。>3时,带球面调和函数Z结,(:‘)分别与L电自峨理多项式(玫罗r心比po】列0画als)尸老劝及超球多项式(川甘韶pheri司pol扣omi司s)尸上‘,只相差一个常数因子: Z{今,(x‘)=c(k,n)p;二’(x‘t’),其中的多项式尸沪(n)3)由生成函数 (‘一“st十52)一“一kZ0”分,(‘)s‘定义,0簇{、}
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条